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Abstract 
 

 

Glaucoma and age-related macular degeneration (AMD), two leading causes of blindness 

and vision loss, are highly heritable and have important genetic basis. In this thesis, I aim to 

identify novel genes associated with the two major eye diseases and other related eye traits 

(i.e. glaucoma endophenotypes: intraocular pressure [IOP] and vertical cup-to-disc ratio 

[VCDR]), improve our understanding of their genetic architecture, provide new insight into 

the underlying biological mechanisms, uncover potential causal risk factors, as well as 

facilitate the development of personalized approaches for prevention and treatment of eye 

diseases. 

 
In the introduction chapter, I reviewed some key concepts for complex traits. Understanding 

the genetic architecture of complex traits is one of the main themes of statistical genetics 

and lays the foundation for theoretical and practical studies. Following that, two important 

statistical genetic approaches were introduced. Firstly, the use of polygenic risk score (PRS) 

to construct a predictive tool based on individual genetic variants (single nucleotide 

polymorphism [SNP]), followed by Mendelian randomization for causal inference using 

SNPs as genetic instrumental variables. The subsequent sections provide an introduction 

of two main eye diseases investigated in the thesis, glaucoma and AMD.  

 
In chapter 2, I evaluated the penetrance and risk effect of Myocilin gene p.Gln368Ter variant 

(rs74315329), one of the most common “monogenic” variants, for glaucoma risk in large 

population-based and registry-based studies. This study shows that approximately 50% of 

MYOC p.Gln368Ter carriers aged 65 and over had glaucoma or ocular hypertension, with 

an even higher prevalence observed in Australian registry-based studies. These findings 

provide evidence to support early detection and monitoring of p.Gln368Ter variant carriers, 

and to direct at-risk individuals to appropriate management. 

 
In Chapter 3, I performed a large-scale multi-trait analysis of glaucoma and its 

endophenotypes (IOP and VCDR) to identify novel glaucoma risk loci, leveraging the high 

genetic correlation between the two traits with glaucoma. Based on the genetic discoveries, 

I built, validated, and evaluated the utility of the newly derived glaucoma PRS in various 

populations and clinical data sets. This study shows glaucoma PRS is predictive of 
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increased risk of glaucoma, earlier age of glaucoma diagnosis, equivalent risk of high 

penetrance variant, increased probability of progression, and requirement of treatment. 

These findings on glaucoma demonstrate how PRS enables effective risk stratification and 

would facilitate the development of personalized methods for prevention and treatment.  

 

In Chapter 4, I conducted large-scale genome-wide association studies (GWAS) to enhance 

our understanding of the genetics of optic disc morphology. Specifically, in Chapter 4A, I 

carried out a large GWAS for vertical disc diameter, tripling the previously studied sample 

size. A subsequent study in Chapter 4B is to apply deep learning algorithms to optic nerve 

head photographs, which allows automated labelling of vertical disc diameter and VCDR, 

and enables systematic evaluation of the distribution of optic nerve head parameters and 

glaucoma risk across different ancestries. The automated labelling dramatically increases 

SNP-based heritability (indicating more accurate phenotyping than clinician gradings), and 

genetic discovery, with more than 200 loci for both VCDR and vertical disc diameter (doubled 

the number of loci from previous studies), and many of the novel VCDR loci also conferring 

risk for glaucoma. 

 

In Chapter 5, I presented the work to map new AMD risk genes from a large meta-analysis 

including International AMD Genomics Consortium data, Genetic Epidemiology Research 

on Aging study, UK Biobank, and FinnGen study. In this study, 69 independent genome-

wide significant SNPs were identified, 12 of which were novel. From further functional 

annotations, we found that most of the novel genes are expressed in the retina and 

potentially involved in the pathways of AMD pathogenesis. 

 

Chapter 6 is a continuation of the work from Chapter 5 to evaluate the association between 

inflammatory and lipid biomarkers and AMD risk. Previous studies have shown the presence 

of complement, inflammatory factors, and lipids in drusen, the hallmark lesions of AMD.  

Genetic studies also indicated the importance of pathways involved in complement cascade, 

high-density lipoprotein particle remodelling, and cholesterol transporter activity. In this 

chapter, I investigated the potential causal associations between serum C-reactive protein 

levels and lipid biomarkers with AMD risk using Mendelian randomization approaches. The 

findings provide evidence to support associations of these biomarkers with the risk of AMD.  
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In the final discussion chapter, I reviewed a series of pertinent questions in the genetic risk 

profiling of glaucoma (Chapter 7A), provided an overview of recent advances about the 

genetics of glaucoma, as well as its endophenotypes, and discussed what the prospects are 

for glaucoma genetic risk predictions. Finally, I highlighted the key findings from the work in 

this thesis and discussed the challenges and futures of fine-mapping causal variants and 

translating genetic risk predictions into clinical care. 
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Chapter 1. Introduction 

1.1 The view of complex traits 

One major goal of genetic studies is to uncover the role of genes in diseases and traits. In 

the post-genomics era, it is known that many of the complex traits (or common diseases), 

from height, eye colour to depression and glaucoma, are influenced by genetics and 

environment. However, it has been a century-long effort to understand how genes contribute 

to diseases and traits. In the early 20th century, the Biometrician-Mendelian Debate involved 

the Mendelians geneticists who were motivated by Mendel’s principles of inheritance and 

focused on individuals and discrete characters with discontinuity of variation, whereas the 

biometric school was interested in population and continuous traits with small gradual 

changes.1 Sir Ronald Aylmer Fisher reconciled biometry with the Mendelian scheme in his 

1918 landmark paper that showed variances can be decomposed into components and 

hypothesized characters such as stature were determined by a large number of “Mendelian 

factors” with the limiting model known as “infinitesimal model”.2–5  

 

In the past decades, with the advance of biotechnology to identify molecular markers and 

the flourishing of computational and statistical genetic methods, the field of quantitative 

genetics for complex traits has changed remarkably.6 Around 2005, underlying the rationale 

“common disease and common variant” hypothesis, the theoretical and practical aspects of 

genome-wide association study (GWAS) were discussed, showing its advantages 

compared with the alternative methods, such as linkage mapping and candidate-gene 

association studies.7,8 GWAS is a design to detect associations between single nucleotide 

polymorphisms (SNPs) and complex traits genome-widely rather than via a gene-by-gene 

candidate approach.8 As of 4th June 2020, the GWAS Catalog (a collection of human 

genome-wide association studies) contains 4,566 publications and 186,829 unique SNP-

trait associations.9 These findings provide valuable insights into the genetic architecture of 

complex traits.  

 

Another debate “nature versus nurture” is about the relative importance of genetic and 

environmental factors in trait variation. Heritability is an estimable population parameter of 

the ratio between genetic variance and phenotypic variance.10 In the broad-sense of 

heritability (H2), the genetic variance includes additive variance, dominance variance, and 
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epistatic variance, whereas the narrow-sense heritability (h2) only estimates the proportion 

of additive genetic variance in total phenotypic variance.11 With the large number of genetic 

variants identified from GWAS, they typically capture a small proportion of phenotypic 

variance, leading to the “missing” heritability question.12 Recent studies have shown a large 

proportion of heritability can be recovered by including all common SNPs, with the remaining 

heritability can be explained by rare variants.13,14 The GWAS signals generally spread 

across the genome, each SNP with a relatively small effect size.15 Empirical analysis have 

also shown that the genetic variance contributed by each chromosome was approximately 

proportional to its physical length,16–18 supporting a polygenic genetic architecture for 

complex traits.19  

 

However, until now it remains unclear the underlying genetic architecture of complex traits, 

for instance, how many genes actually contribute to traits, and how these genes are 

interconnected to regulate gene expressions and phenotypes.20,21 Understanding the 

genetic architecture of complex traits is one of the main themes of quantitative genetics. It 

would shed light on the biological mechanisms underlying disease pathogenesis, and further 

provide insights for druggable targets.22,23 In parallel, it would also contribute to the 

development of personalized risk prediction models for risk stratification, and the 

identification of potential causal risk factors for disease prevention and treatment.  

 

1.2 Polygenic risk score 

Polygenic risk score (PRS), also called a genetic risk score, or allele score, is a method to 

calculate a score based on a selected set of genetic variants and their effect sizes.24,25 

Complex diseases typically have a polygenic basis, with genetic signals spread across the 

genome.20,21 For example, Loh et al. showed more than 70% of 1-Mb genomic regions 

across the whole genome harbor at least one genetic variant contributes to schizophrenia 

risk, implying a large proportion of genes can increase disease risk.26 Empirical and 

theoretical studies have shown that genome-wide markers, each with relatively small effects, 

can improve the prediction of genetic value.27,28  

 

With the successful application of PRS in different diseases, PRS is a promising tool for risk 

stratification, genetic screening, and the development of personalized risk management 

strategies.29–35 At the population level, the predictive accuracy of PRS is historically 



 

 
26 

assessed by area under the receiver-operator characteristic curve (AUC), an index to 

quantify the diagnostic ability of PRS to separate individuals with disease and those without 

disease. The theoretical predictive accuracy of PRS could be derived quantitatively based 

on the heritability of disease, study sample size, and the underlying effect size distributions 

of SNPs.36,37 Currently, the AUCs of PRSs for most complex diseases are usually low or 

moderate (less than 0.7 or 0.8).24,38,39 In the near future, with the available of large sample 

size from biobanks, the projected risk prediction ability of PRS will increase at a steady rate 

until plateauing (e.g. with sample sizes exceeding one million).40 Even at that stage, PRS 

alone is unlikely to have a very high discriminatory ability (e.g. AUC > 0.9) for common 

diseases.24,41 However, it should be noted that developing a diagnostic model based on PRS 

alone is an ambitious goal, since most common diseases show a low or moderate heritability 

and environmental factors also play an important role in diseases development. A more 

realistic and practical utility of PRS is for risk stratification, identifying a subgroup of 

individuals with higher risk. This has been well studied in clinical genetic testing to identify 

carriers of rare monogenic variants usually conferring several fold increased disease risk 

(high penetrate variants), such as BRCA1 and BRCA2 for breast cancer, and MYOC 

p.Gln368Ter for glaucoma.42,43 Knowing such variants is important to identify individuals at 

elevated genetic risk for prevention and early treatment, however, at the population level, 

these variants are not very helpful to improve diagnostic models because the majority of 

patients are not monogenic variant carriers (high false negative). In the same scenario, the 

clinical utility of PRS should not be judged based on its diagnostic ability, but the risk 

stratification ability to stratify populations into subgroups for further screening and early 

therapeutic treatment. Recent studies have also reported PRS can identify individuals with 

genetic risk equivalent to “monogenic mutations”, showing its clinical utility in screening at-

risk populations.33,35  

 

Apart from a larger sample size, another angle to improve the predictive ability of PRS is to 

develop powerful and efficient statistical methods (Table 1). The classical approach to 

construct PRS is pruning+thresholding (P+T method): pruning SNPs to account for linkage 

disequilibrium (LD), and selecting SNPs with P values less than a particular threshold.29 In 

addition to the conventional P+T approach, there are many new methods have been 

proposed to optimise the predictive algorithm and to improve the genetic prediction value. 

For instance, LDpred is a Bayesian shrinkage method to infer the posterior mean effect size 

for each SNP by using GWAS summary statistics and LD information from an external 
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reference panel;44 various other Baysian-based methods can use both individual level data 

and summary statistics;45–47 methods to leverage genetic functional annotation data in 

prediction model,48,49 and to jointly model genetic correlated traits and trans-ethnic data to 

improve predictive power.35,50–54 However, sophisticated statistical methods do not 

necessarily have superior performance.55,56 Different approaches may rely on different 

assumptions of the underlying genetic architecture, and currently there is no optimal unified 

PRS approach that can outperform its counterparts for different traits.55,56 Further empirical 

studies are needed to benchmark the performance of these methods in different scenarios. 

 

Table 1. Summary of polygenic risk score methods. 

Name Description Source Ref
s 

P+T prune SNPs to account for LD, and then select SNPs 
with P values less than a particular threshold 

https://www.cog-
genomics.org/plink2/score 
http://www.prsice.info/  

29,57 

LDpred derive PRS based on a LD reference panel and 
summary statistics and assume different fractions of 
causal SNPs 

https://github.com/bvilhjal/ldpred 
https://github.com/privefl/bigsnpr  

44,58 

lassosum penalized regression framework using summary 
statistics and a reference panel 

https://github.com/tshmak/lassosum  59 

SBLUP best linear unbiased prediction using summary data  https://cnsgenomics.com/software/gct
a/#SBLUP  

60 

SBayesR Bayesian multiple regression on summary statistics 
with a finite mixture of normal distributions prior 

https://cnsgenomics.com/software/gct
b/#SummaryBayesianAlphabet  

47 

PRS-CS  Bayesian regression framework to use a continuous 
shrinkage (CS) prior on SNP effect sizes 

https://github.com/getian107/PRScs  46 

PRS-CSx couples genetic effects across populations to improve 
polygenic prediction in diverse populations 

https://github.com/getian107/PRScsx  61 

NPS non-parametric shrinkage method that allows for 
linkage disequilibrium in summary statistics 

https://github.com/sgchun/nps  62 

SDPR robust Bayesian nonparametric method using summary 
statistics 

https://github.com/eldronzhou/SDPR  63 

DBSLMM deterministic Bayesian sparse linear mixed model with 
a flexible assumption on the effect size distribution 

https://biostat0903.github.io/DBSLM
M/index.html  

64 

AnnoPred leverage genomic and epigenomic functional 
annotations 

https://github.com/yiminghu/AnnoPre
d  

48 

LDpred-funct leverage trait specific functional enrichments https://github.com/carlaml/LDpred-
funct  

49 

PolyPred leverages functionally informed fine-mapping to 
improve trans-ethnic polygenic prediction 

https://github.com/omerwe/polyfun  65 

PleioPred joint modeling of genetically correlated traits and https://github.com/yiminghu/PleioPre 51 
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functional annotations d  

MTGBLUP multi-trait genomic best linear unbiased prediction https://github.com/uqrmaie1/mtgblup  66 

MTAG multi-trait analysis of GWAS summary statistics https://github.com/JonJala/mtag  53 

CTPR cross-trait penalized regression (CTPR) to incorporate 
shared genetic effects across multiple traits 

https://github.com/wonilchung/CTPR  67 

Genomic 
SEM 

A multivariate method to jointly analyse multiple traits 
based on a structural equation modelling framework. 
 

https://github.com/MichelNivard/Geno
micSEM  

68 

 

 

1.3 Mendelian randomization 

With the advent of large-scale genome-wide association studies and the availability of 

GWAS summary statistics, Mendelian randomization (MR) has become a very popular 

causal inference approach in the past decade. In traditional epidemiology designs, 

observational studies may be biased by confounding factors and/or reverse causality. 

Randomized clinical trials (RCTs) are often considered the gold standard for testing 

causality but are often very expensive and sometimes impossible. MR is an instrumental 

variable (IV, e.g. genetic variants) analysis, and is akin to RCT by distributing genotypes 

randomly at conception at a population level (analogous to random allocation of a 

treatment).  

 

Genetic variants associated with interested exposure are usually selected as instrumental 

variables to investigate the potential causal relationship between the exposure and an 

outcome. In general, genetic instrumental analysis in MR is less susceptible to reverse 

causality. However, MR is subject to the following important IV assumptions that require 

careful evaluation:69,70   

(1) Relevance assumption: that genetic variants are associated with the exposure (often 

evaluated by ensuring the strength of the IV-exposure association exceeding an F-statistics 

of 10 or using genome-wide significant SNPs);  

(2) Independence assumption: that genetic variants are not associated with any confounder 

of the exposure-outcome association;  

(3) Exclusion restriction: that genetic variants affect the outcome only through the exposure 

of interest; 

(4) In general, MR estimates represent a linear effect of the risk factor on outcome over a 
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lifetime. 

 

The relevance assumption can be tested by the instrument strength, and usually the 

statistical power can be boosted by a two-sample MR framework, which allows the exposure 

and the outcome derived from two separate studies.71 The polygenicity of complex traits 

provides emerging evidence of the presence of pervasive pleiotropic effects,72,73 which 

means GWAS signals can possibly be associated with multiple traits (including problematic 

confounding factors). In the MR framework, there are two types of pleiotropy to consider: 

vertical pleiotropy and horizontal pleiotropy.74 In vertical pleiotropy (also known as 

mediation) genetic variants are associated with multiple traits on the same pathway, which 

does not invalidate the MR assumptions; while horizontal pleiotropy occurs when genetic 

variants affect multiple traits through separate pathways, which may violate assumption 2 or 

3 and potentially leads to false positive MR findings. Thus, detecting and accounting for 

horizontal pleiotropy have become an important aspect of the methodology and applied MR 

studies. For instance, a recent study proposed a method CAUSE to account for both 

correlated pleiotropy (where horizontal pleiotropic effects on outcome are correlated with 

effects on exposure) and uncorrelated pleiotropy (where horizontal pleiotropic effects on 

outcome are uncorrelated with effects on exposure [Instrument Strength Independent of 

Direct Effect, InSIDE assumption]).75 Uncorrelated pleiotropy occurs when variants influence 

exposure and outcome through separate pathways. It is assumed that variants affect the 

outcome with a random positive or negative direction. If on average the random effects have 

zero mean (balanced horizontal pleiotropy), the uncorrelated pleiotropy only adds random 

noise and leads to an unbiased estimation in inverse-variance weighted method (MR-

IVW).74 When there is non-zero mean random effect (directional pleiotropy), MR-Egger 

regression method can be used to model a non-zero intercept.76 Several outlier removal 

approaches, such as MR-PRESSO and generalized summary MR (GSMR), were also 

developed to deal with directional pleiotropy.77,78 Correlated pleiotropy occurs when variants 

influence outcome and exposure through shared factors or pathways.75 For example, in the 

MR analysis for the association between low-density lipoprotein cholesterol (LDL-C) and 

coronary artery disease (CAD), a subset of LDL-C genetic variants are associated with high-

density lipoprotein cholesterol (HDL-C) or triglycerides, which are phenotypically and 

genetically correlated with LDL-C and potentially affect CAD risk. For correlated pleiotropic 

effects in a shared pathway, a multivariable MR (MVMR) method can be used to model 

multiple traits together.79 MVMR can estimate the direct effect of the exposure on the 
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outcome conditioning on other putative exposure traits. However, in MVMR it also requires 

that the set of SNPs used as genetic IVs are only associated with the included exposure 

variables but do not influence the outcome other than through these included exposure 

variables (a generalized assumption in univariable MR).79 The authors of CAUSE 

demonstrated the new MR method can leverage information from all SNPs and account for 

both correlated and uncorrelated horizontal pleiotropic effects and avoid more false 

positives.75 However, it only models a single unobserved shared factor and is unable to 

account for measured known shared factors like multivariable MR.75 

 

In practice, MR studies often rely on multiple MR approaches that can present unique 

strengths and limitations to infer evidence for causality (Table 2). For the rest of the thesis, 

MR analysis conducted will mainly rely on the conventional inverse variance weighted (IVW) 

model to interpret estimates, whilst in sensitivity analysis various alternative MR approaches 

are applied to evaluate the robustness of MR findings. 
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Table 2. Summary of Mendelian randomization methods. 

Name Description and source1 refs 

two-stage least 
squares 

ratio estimate based on individual level data. 
https://github.com/sb452/mr-code  

80 

IVW inverse-variance weighted combination of Wald ratio estimates based on 
summarized data, efficient but biased when one or more genetic variants are 
invalid IVs. Equivalent to a weighted linear regression with a zero intercept 
term. 

81 

weighted median 
estimate 

allow up to 50% of the weights to come from invalid instrumental variables. 82 

weighted mode-
based estimate 

the largest weights from a subset of variants are contributed by valid 
instruments. 

83 

Contamination 
mixture 

two-component mixture distributions of valid and invalid IVs.  84 

MR-Mix model four components in the MR mixture models. 
https://github.com/gqi/MRMix  

85 

MR-TRYX discover putative risk factors for diseases from horizontal pleiotropy effects 
https://github.com/explodecomputer/tryx  

86 

MR-Egger detect and correct for the bias due to directional pleiotropy. 76 

MR-PRESSO remove candidate instruments based on a heterogeneity measure, similar in 
efficiency to the IVW method. 
https://github.com/rondolab/MR-PRESSO  

77 

GSMR detect outlier variants using HEIDI test. 
https://cnsgenomics.com/software/gsmr/  

78 

CAUSE account for correlated and uncorrelated pleiotropic effects. 
https://github.com/jean997/cause  

75 

multivariable MR 
(IVW, Egger) 

estimate the effect of multiple exposure variables.  79,87 

MR-BMA multivariable MR method based on Bayesian model averaging that scales to 
high-throughput data. https://github.com/verena-zuber/demo_AMD  

88 

1Most of the MR methods are provided in two R packages: TwoSampleMR and MendelianRandomization.   

 

 

  



 

 
32 

1.4 Glaucoma 

Glaucoma, an age related heterogeneous eye disease, is characterized by loss of retinal 

ganglion cells (RGC), thinning of the retinal nerve fiber layer (RNFL), and cupping of the 

optic disc.89–91 It is also the leading cause of irreversible blindness globally. The two main 

forms of glaucoma are primary open angle glaucoma (POAG) and primary angle closure 

glaucoma (PACG).92,93 A meta-analysis from 50 population-based studies has shown that 

the worldwide age-standardized prevalence of glaucoma in population aged 40 years or 

older is 3.54%, and the global prevalence of POAG and PACG is 3.05% and 0.50%, 

respectively.94 The prevalence of glaucoma also varies across different geographic areas 

and ethnic groups. For instance, the prevalence of POAG and PACG is highest in Africa 

(4.20%) and Asia (1.09%), respectively, and worldwide Asia alone accounts for 53.4% of 

POAG cases and 76.7% PACG cases.92–94 Both genetic and environmental risk factors may 

play an important role in the difference of prevalence. Moreover, the different definition and 

classification methods for glaucoma from different studies would also contribute to the 

difference.93 For POAG, per decade increase of age is associated with higher risk (odds 

ratio, OR = 1.73), and men are more likely to have POAG than women (OR = 1.36).94 

Compared to people of European ancestry, African, Asian and Hispanic have increased risk, 

the OR is 2.80, 1.43, and 2.00, respectively. It has been projected that approximately 60 

million people were affected by glaucoma worldwide in 2010, and the number of people with 

glaucoma increases to 76 million in 2020 and to 112 million in 2040.94,95 

 

1.4.1 POAG risk factors 
Primary open angle glaucoma, accounting for more than 80% of glaucoma cases globally 

(>85% in European and Afriacan ancestries, and >65% in Asian ancestry), is mostly 

asymptomatic until late in the disease progression when visual problems arise. It includes 

both adult-onset POAG (usually after the age of 40 years) and juvenile open angle glaucoma 

(JOAG, age of onset between 3 to 40 years old).91 Epidemiological studies have elucidated 

several risk factors, including older age, ethnic background, family history, elevated 

intraocular pressure (IOP), myopia (short-sightedness), and central corneal thickness 

(CCT)96,97. However, the associations with myopia and CCT might be partly due to 

enlargement of optic disc and biased measurement of intraocular pressure. Cerebrospinal 

fluid (CSF) pressure and ocular perfusion pressure are suggested to be associated with 

glaucoma risk.98–100 The evidence for several systemic diseases, such as hypertension, 
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diabetes mellitus, cardiovascular diseases, obstructive sleep apnoea, and migraine, still 

needs further investigations.91  

 

Currently, IOP and vertical cup-to-disc ratio (VCDR) are well studied, and are considered as 

two key endophenotypes of POAG. However, their joint and specific contributions to POAG 

risk remain unclear.   

 

IOP is the sole modifiable risk factor for POAG. Progression of POAG usually stops if the 

IOP level is lowered by 30% to 50% from baseline,90 supporting the strategy of early 

screening and detection. While higher IOP confers greater risk for POAG, it can also develop 

at a normal IOP level as it was shown that not all patients with elevated IOP develop POAG. 

This is the concept of normal-tension glaucoma (NTG), defined as “visual field loss and optic 

nerve abnormalities consistent with glaucoma and IOP that does not exceed 21 mmHg”.101  

 

High VCDR, often a sign of glaucomatous visual field (VF) loss, is commonly used to define 

glaucoma in general population based prevalence surveys.93 For instance, the category 1 

diagnosis from structural and functional evidence is: “eyes with a cup disc ratio (CDR) or 

CDR asymmetry > 97.5th percentile for the normal population, or a neuroretinal rim width 

reduced to < 0.1 CDR”; the category 2 diagnosis for advanced structural damage is: “if the 

subject could not satisfactorily complete visual field testing but had a CDR or CDR 

asymmetry > 99.5th percentile for the normal population, glaucoma was diagnosed solely 

on the structural evidence”.93 Although VCDR is listed as a risk factor of glaucoma, it should 

be noted that VCDR may be used to define glaucoma cases. However, large VCDR does 

not necessarily mean glaucomatous damage because of the variation of optic disc size (e.g. 

physiologic cupping).102 

 

 

1.4.2 Genetics of POAG 
Genetic factors play an important role in the development of POAG.103,104 In the general 

population, participants having a first degree relative with glaucoma have almost 10 times 

increased risk of developing POAG.105 A recent large-scale study showed that the heritability 

of glaucoma is approximately 70% based on reconstructed family data.106 Identifying POAG 

risk genes will improve our understanding of the underlying pathogenic mechanisms, 

increase risk prediction for POAG, as well as aid in fine-mapping of potential causal genes, 
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the development of therapeutics for treatment, and personalized approach for genetic 

screening.  

 

In the past decades, genetic linkage analyses have identified many genes associated with 

the risk of POAG, such as myocilin (MYOC), OPTN, and TBK1.107–109 The MYOC gene is 

considered one of the most important genes associated with POAG, and the pathogenic 

variants in MYOC gene have been found in 2% to 4% of POAG cases.109,110 The 

p.Gln368Ter (rs74315329) variant is the most common glaucoma associated MYOC variant 

amongst populations of European ancestry.107,111,112 Previous studies have shown that the 

association between MYOC p.Gln368Ter variant and POAG is very high (odds ratio, OR > 

10). Moreover, MYOC p.Gln368Ter carriers are usually diagnosed at a younger age and 

have higher IOP levels.113,114 However, the estimated penetrance of MYOC p.Gln368Ter in 

POAG and ocular hypertension has been inconsistent between family-based studies and 

general population-based studies.107,111,112,115–117 In Chapter 2, I leveraged large scale 

datasets of UK Biobank (UKB) and registry-based datasets from Australia to investigate the 

penetrance and effect size of the MYOC p.Gln368Ter with respect to glaucoma and ocular 

hypertension.  

 

The pace of gene discoveries for complex-traits have increased remarkably during the past 

decade.6 With the aid of GWAS, at least 50 genes have been identified to be associated 

with POAG.118–126 Two recent studies from our group have identified more than 100 loci from 

multi-trait and cross-ancestry meta-analysis.35,127 As presented for many other complex 

traits or common diseases, current gene discoveries only account for a moderate fraction of 

heritability, and the biological mechanisms of many genes are largely unknown. The 

projected number of independent loci will increase in the future when larger sample size is 

available, e.g. several thousand SNPs will be reported when sample size reaches one 

million for many diseases and traits,40 and each loci only has a very small effect on disease 

risk. Uncovering the biological functions for each identified loci is unrealistic, but if some 

genes could be used as drug targets would be a tremendous advance. Another application 

of the gene discoveries is to build a genetic risk prediction model, where sample size is a 

key limiting factor of prediction accuracy.62 As shown in a “15 years of GWAS” paper,128 

GWAS has no signs of slowing down, and large sample size will continue to contribute to 

new gene discoveries and provide insight into the understanding of the genetics of POAG.  
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1.4.3 Genetics of IOP and VCDR 
As key quantitative endophenotypes for POAG, the genetics of IOP and VCDR, can be very 

informative to dissect the genetic risk factors underlying POAG. Our recent study has shown 

the genetic correlation between POAG and IOP is 0.71 (standard error, SE = 0.04), and the 

genetic correlation between POAG and VCDR is 0.50 (SE = 0.05). Leveraging the high 

genetic correlation between IOP/VCDR and POAG, multi-trait GWAS analysis is an ideal 

approach to boost GWAS power for gene discoveries, uncover novel glaucoma risk genes 

and pathways, and improve the accuracy of genetic risk prediction models for glaucoma risk. 

 

The availability of large biobanks have accelerated the gene discoveries for IOP dramatically 

in recent years.124–126,129,130 For instance, in 2017, an IOP GWAS meta-analysis of 37,930 

participants from the International Glaucoma Genetic Consortium (IGGC) reported 9 

genomic regions passing genome-wide significance level; in 2018, including 103,914 IOP 

measures from UKB identified more than 100 loci, and more than half of them (85 of 101) 

are novel IOP genes.125,126,131 More importantly, we found 53 of them were associated with 

glaucoma after Bonferroni correction, indicating these IOP genes contribute to glaucoma 

risk.126 Another independent study based on UKB, IGGC and EPIC-Norfolk reported that 48 

IOP loci were nominally associated with glaucoma (P < 0.05), and 14 of them were 

associated with glaucoma after Bonferroni correction (P < 0.00042).125 Several new 

pathways were identified to be associated with IOP and glaucoma from the large scale IOP 

GWAS. From our IOP GWAS,126 11 pathways were highlighted after multiple corrections, 

and 9 pathways with a P value less than 0.05 in glaucoma pathway analysis. Vascular 

development pathway, positive regulation of locomotion, cell motility and cell migration 

showed the strongest evidence. Khawaja et al. found that angiopoietin-receptor tyrosine 

kinase signaling pathway, lipid metabolism, mitochondrial function, and developmental 

processes are potential pathways to regulate IOP levels.125 For glaucoma risk prediction, 

Khawaja and colleagues built a polygenic risk score (PRS) prediction model based on 120 

IOP variants, three known POAG SNPs, sex, and age. The area under the curves (AUC) 

was 0.76  for HTG in the National Eye Institute Glaucoma Human Genetics Collaboration 

Heritable Overall Operational Database (NEIGHBORHOOD) study, and 0.74 for glaucoma 

in UK Biobank participants. 

 

Previously, the VCDR GWAS of 32,272 participants from the IGGC reported 30 genomic 
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regions, only six of them were associated with POAG (including BMP2, CDKN1A, CDKN2B-

AS1, FLNB, RERE, and SIX6).132,133 In Chapter 4, retinal fundus photographs from UKB and 

Canadian Longitudinal Study on Aging were used to increase sample size for VCDR and 

vertical disc diameter (VDD), boosting the sample size to more than 100,000 and revealing 

more than 200 independent genome-wide loci for both VCDR and VDD. The detailed results 

are presented in Chapter 4A and 4B. 

 

1.5 Age-related macular degeneration 

Age-related macular degeneration (AMD), a degenerative disorder of the central retina, is 

the leading cause of central vision loss in the elderly. The prevalence of AMD is 8.7% 

globally among individuals older than 45 years, with a higher prevalence of 12.3% in 

Europeans.134 It has been estimated that 196 million people were affected by AMD in 2010, 

and the number of people with AMD will increase to 288 million in 2040.134 The progression 

of AMD is classified as early-stage (medium drusen and no retinal pigmentary changes), 

intermediate-stage (large drusen or medium drusen with retinal pigmentary changes) and 

late-stage (two subtypes: geographic atrophy [GA] and choroidal neovascularization 

[CNV]).135,136 The pathogenesis of AMD progression remains largely unclear. In recent 

years, anti-vascular endothelial growth factor (VEGF) therapies have become an effective 

treatment to reduce the progression of CNV subtype.137 However, the treatment is not 

curative, and there are no effective medications for GA subtype, which accounts for 90% of 

late AMD cases. In addition, a better prevention strategy is to identify and to treat AMD at 

an earlier stage before serious vision loss occurs. Therefore, it is important to find new 

pathogenesis mechanisms and therapeutic targets for AMD.  

 

 

1.5.1 AMD risk factors 
Several risk factors have been identified for AMD, such as age, smoking, and genetic 

factors.138 Advancing age is one of the most important risk factors for AMD. In European 

populations, the prevalence of AMD is 5.7% in the age group between 50 to 59 years old, 

whereas the prevalence is 22.5% and 33.6% in the 70-79 and 80-84 age groups, 

respectively,134 with a similar age trend in Asian and African populations. Apart from age, 

smoking is consistently associated with AMD risk from different studies, and is considered 
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as the most important modifiable risk factor.139 Current smokers have two times increased 

risk relative to non-smokers, and are more likely to develop AMD at an earlier age.140,141 

However, the association of past smoking and AMD risk is controversial. Some studies 

reported no association, and the incident risk of AMD may decrease after smoking 

cessation.140,142 A variety of less robust risk factors have been reported for AMD. For 

instance, hyperopia was associated with an increased AMD risk in a meta-analysis143, which 

was also supported by a Mendelian randomization study, showing a minimal influence of 

refractive error on AMD risk.144 Some lipid biomarkers have been shown to be associated 

with AMD risk.145–151 An observational meta-analysis showed that higher levels of high-

density lipoprotein cholesterol (HDL-C) is associated with an increased risk of AMD, 

whereas higher levels of low-density lipoprotein cholesterol (LDL-C), total cholesterol 

(CHOL), and triglycerides (TG) are associated with a decreased AMD risk.146 In addition, 

two previous MR studies also supported a potential causal role of higher levels of HDL-C on 

the risk of advanced AMD, but not other lipid biomarkers.147,148 Other reported possible risk 

factors for AMD include sunlight exposure,152,153 alcohol consumption154, dietary 

patterns,155,156 physical activity,157 serum C-reactive protein levels,158,159 circulating vitamin 

D levels,160 obesity,161,162 diabetes,163 and cardiovascular diseases.164 

 

 

1.5.2 Genetics of AMD 
Genome-wide association studies have identified more than 50 genes association with AMD 

risk, such as complement pathway related genes, complement factor H (CFH), factor I (CFI), 

complement components C2, C3, C9, and lipid related genes CETP, LIPC, ABCA1.165–167 

These genetic findings have advanced our understanding of the biological mechanisms 

underlying AMD pathogenesis, as well as have provided therapeutic targets for clinical 

trials.168,169 Leveraging these genetic findings, genetic risk prediction models for AMD have 

shown risk stratification and predictive capacity.166,167 For example, Fritsche et al. reported 

that the risk to develop advanced AMD was increased by 44-fold for participants in the top 

decile of genetic risk score relative to those in the bottom decile.166 In Chapter 5, from a 

meta-analysis of AMD GWAS, we identified 69 lead common risk variants, and in aggregate, 

a polygenic risk prediction model can reach an AUC value of 0.76 (95% CI: 0.72–0.80) in a 

population based study.167   

 

Recent bulk and single-cell transcriptome-wide atlas of human retina have also provided 
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new insights into gene fine-mapping and potentially pathogenic cell types for AMD.170,171 For 

example, the Eye Genotype Expression (EyeGEx) database, a large resource for retinal 

transcriptomes established from 453 AMD cases and controls, has presented a gene 

expression reference database for ocular traits complementing the GTEx project.170 A 

transcriptome-wide association analysis (TWAS) based on the retinal eQTL data and AMD 

GWAS summary statistics have prioritized three potential target genes (RLBP1, HIC1, and 

PARP12).170 Another study reported the first single-cell transcriptomic atlas of human retina 

from six postmortem retinas with a total of 20,091 and 3,248 cells respectively from two 

scRNA-seq platforms, and showed some cell types are preferentially associated with the 

risk of AMD.171  
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Chapter 2. Myocilin gene Gln368Ter variant penetrance and association 
with glaucoma in population-based and registry-based studies 

The p.Gln368Ter (rs74315329) risk allele in the myocilin gene (MYOC) was initially reported 

to have high penetrance in glaucoma registry-based studies, but much lower estimates were 

recently obtained from population-based studies. This disparity was investigated using data 

from Australia and the United Kingdom. This cross-sectional study within the UK Biobank 

(UKB) included participants of white British ancestry. Glaucoma cases were defined by 

International Classification of Diseases, Ninth Revision (ICD-9) and Tenth Revision (ICD-

10) diagnoses and self-reported questionnaires. Carriers of the MYOC p.Gln368Ter variant 

were identified using genotype imputation from arrays. In contrast, two Australian registry-

based studies, the Australian and New Zealand Registry of Advanced Glaucoma and the 

Glaucoma Inheritance Study in Tasmania, ascertained glaucoma cases referred by eye care 

clinicians, with historic control participants recruited from other Australian studies. Samples 

were either directly sequenced or had genotypes determined by imputation (for the 

Australian registry and historic control participants). Recruitment to the UKB occurred 

between 2006 and 2010, and data analysis occurred from September 2017 to July 2018. A 

total of 411 337 UKB participants of white British ancestry (mean [SD] age, 56.6 [8.0] years) 

were included, plus 3071 Australian registry and 6750 historic control participants. In the 

UKB, the minor allele frequency of the MYOC p.Gln368Ter variant was 1 in 786 individuals 

(0.13%). The odds ratio of p.Gln368Ter in patients with primary open-angle glaucoma 

(POAG) was 6.76 (95% CI, 4.05-11.29); glaucoma (POAG, self-reported glaucoma, and 

unspecified glaucoma), 4.40 (95% CI, 3.38-5.71); OHT, 3.56 (95% CI, 2.53-4.92); and OHT 

and glaucoma combined, 4.18 (95% CI, 3.05-5.67). The penetrance of the MYOC 

p.Gln368Ter variant was 7.6% in patients with glaucoma, 24.3% in patients with OHT, and 

30.8% in patients with OHT and glaucoma combined. In the Australian registry studies, the 

odds of MYOC p.Gln368Ter variant were 12.16 (95% CI, 6.34-24.97) in patients with 

advanced glaucoma and 3.97 (95% CI, 1.55-9.75) in those with nonadvanced glaucoma; 

the penetrance of glaucoma was 56.1%, and penetrance in those considered to have 

glaucoma or be glaucoma suspects was 69.5%. In conclusion, the MYOC p.Gln368Ter 

variant confers a very high-risk effect size for advanced glaucoma; the risk is lower in 

nonadvanced glaucoma and OHT. In the general population sample, approximately 50% of 

MYOC p.Gln368Ter carriers 65 years and older had glaucoma or OHT, with higher 

prevalence in the Australian registry studies.  
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2.1 Introduction 

Glaucoma is the leading cause of irreversible blindness globally. The most common forms 

of glaucoma are primary open angle glaucoma (POAG) and primary angle closure glaucoma 

(PACG). For the population over 40 years old, the worldwide age-standardized prevalence 

of glaucoma, POAG and PACG is 3.54%, 3.05% and 0.50%, respectively.94 It is estimated 

there were 60.5 million POAG and PACG patients worldwide in 2010 and that number will 

be 112 million by 2040.94,95 Elevated intraocular pressure (IOP) is the major modifiable risk 

factor for POAG. Progression of POAG is arrested or reduced if the IOP is lowered by 30–

50% from baseline levels.90 

 

Genetic factors play an important role in glaucoma.103,104,172 Having a first-degree relative 

with glaucoma raises the likelihood of developing glaucoma by 9.4 fold relative to the general 

population.105 A recent large-scale study estimated the heritability of glaucoma to be 70% 

using reconstructed family data.106 The myocilin gene (MYOC) at the GLC1A locus was the 

first gene discovered to be associated with POAG.109,110 Pathogenic variants in MYOC have 

been found in 2-4% of POAG cases.107,111 The exact pathogenic mechanisms by which 

disease-causing variants in MYOC cause glaucoma have not been elucidated completely, 

but evidence supports a dominant-negative mechanism.173,174 

 

The p.Gln368Ter (rs74315329) is the most common MYOC variant amongst populations of 

European ancestry.107,111,112 The association between p.Gln368Ter and POAG has a high 

odds ratio (OR>10), with p.Gln368Ter associated with younger age at onset and greater 

severity of IOP elevation.113,114 The estimated penetrance of p.Gln368Ter in glaucoma and 

ocular hypertension (OHT) has been inconsistent between family studies and general 

population-based studies.107,111,112,115–117 There are several potential explanations for this 

inconsistency. Estimates from family studies may be inflated due to ascertainment bias, 

aggregation of other genetic factors, and/or confounded by common environmental risk 

factors. Conversely, estimates from general population-based designs are likely to be low 

due to undersampling of cases (especially more severely affected cases) amongst 

volunteer-based studies.117 Additionally, for both family studies and general population-

based studies, statistical power is typically low due to relatively low numbers of p.Gln368Ter 

carriers. 
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In this study, we explore the penetrance and association of MYOC p.Gln368Ter with 

glaucoma and OHT in white Europeans enrolled in the UK Biobank (UKB) study, and 

compare the results with registry-based studies. 

 

 

2.2 Methods 

2.2.1 UK Biobank 
The UKB project is a large-scale prospective cohort study of approximately 500,000 

individuals across the United Kingdom, aged between 40 and 69 at the time of recruitment 

(2006-2010). Detailed information of the UKB study is available online 

(http://www.ukbiobank.ac.uk/resources/ ) and the genotype curation process is described in 

Bycroft et al130. The study was approved by the National Research Ethics Service 

Committee North West – Haydock, in accordance with the Declaration of Helsinki.  

 

In the UKB study, the genotypic data were imputed with IMPUTE4 using the Haplotype 

Reference Consortium (HRC), UK10K and 1,000 Genomes Phase 3 reference panels. 

Among 487,409 participants passing genotyping quality control, 409,694 had white-British 

ancestry based on self-reported ethnicity. We identified 438,870 individuals who fell within 

the same genetic principal components-based clustering as those who self-reported white-

British, based on the first two genetic principal components (eFigure 1 in the supplement). 

 

Our previous study showed that p.Gln368Ter can be imputed with high accuracy from 

genotyping arrays.114 In this study, the imputation posterior probability for each of the three 

genotypes (GG, AG, and homozygous for risk allele AA) was used to identify p.Gln368Ter 

carriers. We calculated the genotype dosages based on imputation posterior probability. As 

the dosage only ranged from 0 to 1.1, there were no p.Gln368Ter homozygous carriers in 

our study. For downstream analyses requiring best guess genotypes, we set the dosage 

threshold of heterozygous AG at 0.8.  

 

A subset of 112,690 UKB participants underwent IOP measurements at the UKB 

Assessment Centre using Reichert Ocular Response Analyser,175 the detailed procedure is 

available online (http://biobank.ctsu.ox.ac.uk/crystal/docs/Intraocularpressure.pdf). The 
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mean corneal-compensated IOP (IOPcc, UKB Field 5254 and 5262) and mean Goldmann-

correlated IOP (IOPg, Field 5255 and 5263) for each participant was calculated at the initial 

assessment visit, with measurements < 5 or > 60 mmHg set as “missing”. OHT or high IOP 

was defined as mean IOPcc > 21 mmHg (N= 6,827). 

 

Among the 438,870 subjects with genetic data, we removed participants who withdrew 

consent (N=10). From the remaining 438,860 participants, 7,997 glaucoma cases were 

identified using the following criteria: 1) had International Classification of Diseases (ICD)-9 

or ICD-10 diagnosis (“Primary Open Angle Glaucoma”, “Other Glaucoma”, “Glaucoma, 

unspecified”); or 2) responded “Glaucoma” in “eye problems/disorders” (Field 6148); or 3) 

responded “Glaucoma” in self-reported non-cancer illness (Field 20002). There were 1,111 

POAG cases identified by ICD-9 or ICD-10 diagnosis “Primary Open-Angle Glaucoma”. In 

participants with IOP measurements, we defined “OHT or glaucoma” cases as individuals 

who had mean IOPcc > 21 mmHg or were identified as glaucoma cases. The information 

for age at glaucoma onset was gathered from Field 4689 and 20009. Field 21022 was used 

as age at recruitment. 

 

Finally, “healthy” controls for glaucoma, POAG, and OHT were selected as individuals who: 

1) did not have other serious eye diseases (Field 6148, 26,576 individuals excluded); and 

2) did not have other kinds of glaucoma diagnosed by ICD-9 or ICD-10 (glaucoma suspect, 

PACG, or secondary glaucoma, 947 individuals excluded). For POAG controls, 6,886 other 

glaucoma cases were set as not available (NA) status. In total 411,337 UKB participants 

were included in this study. The flow-chart illustrating the selection criteria is shown in the 

eFigure 2 in the supplement.  

 

2.2.2 Australian registry-based studies 
In addition to examining population-based data, we considered participants from two 

registry-based studies: the Australian and New Zealand Registry of Advanced Glaucoma 

(ANZRAG) and the Glaucoma Inheritance Study in Tasmania (GIST). Recruitment has been 

previously described. 176,177 In brief, glaucoma patients from Australia and New Zealand had 

been referred to the ANZRAG by their ophthalmologists. Participants in the GIST were 

recruited from surveys distributed to ophthalmology clinics and advertisements around 

Tasmania. Clinical information was collected by the patient’s treating ophthalmologist. 

Participants from ANZRAG/GIST were considered to have glaucoma if they had 
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glaucomatous visual field defects on standard automated perimetry and neuroretinal rim 

thinning (cup-to-disc ratio, CDR ≥0.7 or CDR asymmetry ≥0.2). Glaucoma suspects had 

OHT as defined by IOP above 21 mmHg or had pre-perimetric glaucoma based on 

glaucomatous appearance of the optic disc or thinning or the retinal nerve fibre layer with 

no glaucomatous field changes. 

 

There were two arms to the ANZRAG/GIST component: 1) a sequencing-based study within 

ANZRAG/GIST alone to estimate the penetrance of p.Gln368Ter and 2) an array-based 

genome-wide association study (GWAS) to allow estimation of OR of glaucoma in a large 

sample of cases and controls (with controls sourced from outside ANZRAG/GIST).  

 

In the sequencing-based study, all glaucoma participants and their relatives in the 

ANZRAG/GIST underwent Sanger sequencing for MYOC exon 3 as previously described.178 

There were 174 participants with a Sanger-validated MYOC p.Gln368Ter carriers, including 

164 with a known age at diagnosis.  

 

In the array-based study, we selected a total of 3,071 unrelated glaucoma cases from 

ANZRAG/GIST and 6,750 unscreened controls from the Brisbane Adolescent Twin Study, 

the Australian Cancer Study, a study of inflammatory bowel diseases, and a study of 

endometriosis.120,122,179 The samples were genotyped on Illumina Omni1M, OmniExpress, 

or HumanCoreExome arrays (approximately two thirds of cases were genotyped on 

HumanCoreExome arrays, with the remainder typed on arrays with higher SNP density 

[Omni1M/OmniExpress], with a similar proportion among the controls).180 Genotype 

imputation was performed using Minimac3 through the Michigan Imputation Server, with the 

HRC r1.1 as the reference panel. We investigated the effect size of p.Gln368Ter for 

advanced (N=1,753) and non-advanced glaucoma (N=1,318) separately. Advanced and 

non-advanced glaucoma cases were defined as previously described.181 Approval was 

obtained from QIMR Berghofer Institute of Medical Research, the Southern Adelaide Clinical 

Human Research Ethics Committee/Flinders University, the University of Tasmania, and the 

Royal Victorian Eye and Ear Hospital in accordance with the Declaration of Helsinki.  

 

2.2.3 Statistical Analysis 
Descriptive statistics are presented as mean (standard deviation) for continuous variables 

or as number (percentages) for categorical variables. Continuous variables were compared 
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between groups using analysis of variance, whereas Pearson chi-square or Fisher exact 

tests were used for categorical variables. We explored the frequency of glaucoma and OHT 

in different age groups (less than 50, 50-59, 60-65 and more than 65 years old) in MYOC 

p.Gln368Ter carriers. We also investigated the cumulative risk of glaucoma by age 50, 60 

and 65 years old using a Cox model (adjusted for sex, and the first six genetic principal 

components, UKB) or the Kaplan-Meier method (ANZRAG). The association between 

p.Gln368Ter dosage and disease status was estimated using logistic regression adjusted 

for sex, age, and the first six PCs. To control the bias from familial relationships in 

association analysis, we used a relationship-based pruning strategy in PLINK 

(https://www.cog-genomics.org/plink/) to exclude one member of each pair of samples if the 

genomic relatedness greater than 0.2.182 The R “survival” package was used in analyses (R 

version 3.4.1; http://www.r-project.org). We used two-sided P values and an alpha level of 

0.05.  

 

2.3 Results 

Table 1 shows the baseline characteristics of the 411,337 UKB participants included in this 

study. Approximately 46% of participants were male. The mean age of participants was 

56.59 years old, with a mean IOPcc of 16.06 mmHg and mean IOPg of 15.93 mmHg. We 

observed a trend that the average level of IOP increased with age. 

 

Table 1. Characteristics of 411,337 UK Biobank study participants. 

Variable  Age <50 years 
(N=94164) 

Age 50-60 years 
(N=138395) 

Age 60-65 years 
(N=101322) 

Age > 65 years 
(N=77456) 

Age Years 45.0 ± 2.7 54.8 ± 2.9 61.9 ± 1.4 66.9 ± 1.5 

Sex Male  42529 (45.2%) 60806 (43.9%) 46539 (45.9%) 38851 (50.2%) 

 Female 51635 (54.8%) 77589 (56.1%) 54783 (54.1%) 38605 (49.8%) 

IOPcc mmHg 15.20 ± 3.17 15.78 ± 3.39 16.49 ± 3.55 16.85 ± 3.72 

IOPg mmHg 15.38 ± 3.43 15.76 ± 3.57 16.23 ± 3.64 16.38 ± 3.80 

Abbreviations: IOP, intraocular pressure; IOPcc, corneal-compensated IOP; IOPg, Goldmann-correlated IOP. 
 

 

From 411,337 UKB participants, it was estimated that 1,046 participants carried the 

p.Gln368Ter AG genotype. The minor allele frequency (MAF) of risk allele A of p.Gln368Ter 
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was 1/786 (0.13%) and the observed MAFs were roughly the same across different age 

groups. As expected given the frequency, no AA homozygotes were observed. The MYOC 

p.Gln368Ter penetrance and its association with glaucoma and OHT are summarised in 

Table 2. The penetrance of p.Gln368Ter in glaucoma, POAG, OHT, and OHT or glaucoma 

was estimated to be 7.55%, 1.63%, 24.30%, and 30.84%, respectively. The ORs (95% 

confidence interval, CI) of p.Gln368Ter in glaucoma, POAG, OHT, and OHT or glaucoma 

were 4.40 (3.38, 5.71), 6.76 (4.05, 11.29), 3.56 (2.53, 4.92), and 4.18 (3.05, 5.67), 

respectively. For p.Gln368Ter carriers, their IOPcc was 2.04 mmHg (95% CI: 1.44 - 2.64 

mmHg) higher than individuals of GG genotype. 

 

Table 2. Disease frequency, penetrance and risk effect of MYOC p.Gln368Ter in the 
UK Biobank.  

Phenotype rs74315329 AGa rs74315329 GG OR (95% CI)c P value 

Glaucoma 79 (7.55%)b 7918 (1.93%) 4.40(3.38,5.71) < 0.001 

POAG 16 (1.63%) 1095 (0.27%) 6.76(4.05,11.29) < 0.001 

OHT 52 (24.3%) 6775 (8.04%) 3.56(2.53,4.92) < 0.001 

OHT or 

glaucoma 
66 (30.84%) 8015 (9.51%) 

4.18(3.05,5.67) < 0.001 

IOPcc, mmHg 18.10 ± 4.47 16.06 ± 3.50 - < 0.001 

IOPg, mmHg 17.74 ± 4.28 15.92 ± 3.62 - < 0.001 

Abbreviations: CI, confidence interval; IOP, intraocular pressure; IOPcc, corneal-compensated IOP; IOPg, 

Goldmann-correlated IOP; OHT, ocular hypertension; OR, odds ratio; POAG, primary open angle glaucoma. 
a In the UK Biobank, there are 1,046 carriers of MYOC p.Gln368Ter and 410,291 non-carriers. In the subset 

of participants with IOP measurements, there are 214 carriers of MYOC p.Gln368Ter and 84,267 non-carriers. 
b Number of cases (frequency). Penetrance showed in bold. 
c In association analysis, relatives are removed if the genomic relatedness greater than 0.2 (~5% of the 

individuals are removed due to relatedness prior to the statistical test being applied). 
P values are the association between p.Gln368Ter dosage and disease status using logistic regression 

adjusted for sex, age, and the first six genetic principal components (general linear model was used for IOP 

levels). 

 

 

In the UKB, the age-related frequency of glaucoma, POAG, OHT, and OHT or glaucoma is 

summarised in Table 3 and Figure. The frequency of glaucoma, POAG, OHT, and OHT or 

glaucoma in p.Gln368Ter carriers older than 65 years old was 15.46%, 4.09%, 40.00%, and 

48.00%, respectively. We gathered age at onset glaucoma information for 4,915 individuals: 
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the mean age and standard deviation at diagnosis was 53.49 ± 10.81 years old. The 

cumulative risk of glaucoma at 50, 60 and 65 years old was 2.27%, 8.14% and 15.60%, 

respectively (eTable 1 in the Supplement).   

 
Table 3. Age-related prevalence of glaucoma and OHT in the UK Biobank. 

Age Group rs74315329 AG rs74315329 GG P value 

Glaucoma    

<50 years 3 (1.26%)a 469 (0.5%) 0.12 

50-59 years 19 (5.21%) 1817 (1.32%) <0.001 

60-65 years 27 (10.84%) 2555 (2.53%) <0.001 

>65 years 30 (15.46%) 3077 (3.98%) <0.001 

POAG    

<50 years 1 (0.42%) 36 (0.04%) 0.09 

50-59 years 3 (0.86%) 216 (0.16%) 0.02 

60-65 years 5 (2.2%) 326 (0.33%) <0.001 

>65 years 7 (4.09%) 517 (0.69%) <0.001 

OHT    

<50 years 9 (21.95%) 715 (3.98%) <0.001 

50-59 years 12 (15.58%) 1730 (6.38%) <0.001 

60-65 years 11 (23.91%) 2172 (9.82%) <0.001 

>65 years 20 (40%) 2158 (12.65%) <0.001 

OHT or glaucoma    

<50 years 9 (21.95%) 791 (4.4%) <0.001 

50-59 years 15 (19.48%) 1985 (7.32%) <0.001 

60-65 years 18 (39.13%) 2583 (11.68%) <0.001 

>65 years 24 (48%) 2656 (15.57%) <0.001 

Abbreviations: IOP, intraocular pressure; OHT, ocular hypertension; POAG, primary open angle glaucoma. 
a Number of cases (frequency). Frequency in risk allele carriers showed in bold. 

P values are from chi-square test or Fisher exact test comparing disease frequency based on p.Gln368Ter 

genotypes in different age groups (~5% of the individuals are removed due to relatedness prior to the statistical 
test being applied). 
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Figure. Age-associated frequency of glaucoma and ocular hypertension (OHT) or 
glaucoma suspects in p.Gln368Ter risk allele carriers.  
ANZRAG indicates the Australian and New Zealand Registry of Advanced Glaucoma; GIST, the 

Glaucoma Inheritance Study in Tasmania; UKB, the UK Biobank. 

 

 

Among the 164 individuals carrying the p.Gln368Ter variant in ANZRAG/GIST, 92 (56.1%) 

had glaucoma, 22 (13.4%) were glaucoma suspects and 50 (30.5%) were unaffected. There 

were 77 males and 87 females. The mean age at glaucoma diagnosis was 53.18 ± 12.93 

years and their mean IOP at diagnosis was 32.47 ± 9.47 mmHg. The penetrance of 

p.Gln368Ter with respect to glaucoma was 56.10%; for a wider definition including both 

glaucoma and glaucoma suspects the penetrance was 69.51% (Table 4). Figure and eTable 

2 present the age-related frequency of glaucoma and glaucoma/suspects in ANZRAG/GIST 

registry-based studies in p.Gln368Ter carriers. The cumulative risk of glaucoma in MYOC 

p.Gln368Ter carriers at 50, 60 and 65 years old was 55.88%, 80.49% and 87.06% 

respectively, and the cumulative risk of glaucoma/suspects at 50, 60 and 65 years old was 

77.59%, 94.38% and 95.96%, respectively (eTable 3 in the Supplement). Based on imputed 

p.Gln368Ter status, the OR (95% CI) of p.Gln368Ter for advanced and non-advanced 

glaucoma was 12.16 (6.34, 24.97) and 3.97 (1.55, 9.75), respectively. 
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Table 4. Penetrance of p.Gln368Ter in ANZRAG and GIST registry-based studies. 

Phenotype Disease 

status 

Rs74315329 AG, 

No.(%) 

Mean age at last 

examination (y) 

P value Mean max 

recorded IOP  

P value 

Glaucoma No 72 (43.90%) 48.11 ± 16.74  

<0.001 

19.32 ± 6.07  

<0.001 
Yes 92 (56.10%) 69.13 ± 12.65 31.26 ± 9.55 

Glaucoma or 

glaucoma 
suspect 

No 50 (30.49%) 42.50 ± 16.25  

<0.001 

16.48 ± 2.87  

<0.001 
Yes 114 (69.51%) 67.14 ± 13.12 30.01 ± 9.43 

Abbreviations: IOP, intraocular pressure, mmHg. Penetrance showed in bold. 

 

 

2.4 Discussion 

To our knowledge, this is the largest study to examine the penetrance and association of 

the MYOC p.Gln368Ter on glaucoma and OHT in a cohort of European white-British 

individuals and compare it with data from two large registry-based studies. We found that 

p.Gln368Ter was robustly associated with glaucoma, POAG and OHT and that its 

penetrance increased with age.  

 

The p.Gln368Ter variant was well imputed (imputation quality score of 93.8%) and the MAF 

was 0.13% in UKB. In our study, the MAF was similar to those reported from exome 

sequencing databases, i.e. 0.15% (192/126640) in Non-Finnish European in the Genome 

Aggregation Database (http://gnomad.broadinstitute.org/), but much higher than that 

recently reported in the TwinsUK cohort (MAF 0.07%, 8/12184).117 The lower MAF seen in 

the TwinsUK cohort suggests that the set of volunteers ascertained was biased toward 

healthy individuals (“healthy individual” bias). 

 

In the UKB study, POAG or glaucoma cases were identified by ICD-9, ICD-10 diagnosis or 

self-reported questionnaires and the frequency of POAG and glaucoma was 0.27% and 

1.94%, respectively. A previous study estimated the prevalence of POAG and glaucoma in 
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Europe as 2.51% and 2.93%, respectively.94 Previous studies also showed that 50% of 

glaucoma cases are undiagnosed.183,184 Due to the lack of a comprehensive eye 

examination in the UKB, the proportion of glaucoma or POAG cases defined here were lower 

than expected. However, IOP is a key risk factor for POAG and the main mechanism of 

p.Gln368Ter is via elevation of IOP.109,181,185 The penetrance and risk effect of p.Gln368Ter 

in OHT serves as a proxy for POAG.117 The prevalence of OHT (defined as IOPcc >21 

mmHg) reported here was 8.08%, which is similar to an earlier study.186 

 

Family studies have shown that p.Gln368Ter had a high penetrance in POAG and 

OHT.107,112,115 For instance, Craig et al.112 reported the age-related penetrance of 

p.Gln368Ter for OHT or POAG as 72% (28/39) at age 40 years and 82% (14/17) at age 65 

years. Another study by Allingham and colleagues observed that 100% (9/9) people with the 

p.Gln368Ter variant had elevated IOP, and 78% (7/9) had POAG by age 70.115 In the current 

ANZRAG/GIST study, our data indicated that the cumulative risk for glaucoma and 

glaucoma/suspects was 87.06% and 95.96% respectively at 65 years old, which was 

consistent with findings from previous family-based studies.115, 107,112 

 

From their population-based study, Nag et al.117 reported that the penetrance of p.Gln368Ter 

in relation to OHT was 12.5% (1/8) and 19.4% (6/31) in the TwinsUK and the Rotterdam 

Study, respectively. The penetrance of p.Gln368Ter for POAG was 12.5% (1/8) and 9.7% 

(3/31) in the TwinsUK and the Rotterdam Study, respectively. For OHT, our study showed 

that the penetrance of p.Gln368Ter (24.3%, 52/214) was lower than the previous family 

studies but higher than in the population-based study. With approximately 100,000 

participants having IOP measurements, our study provided a more robust estimation of 

p.Gln368Ter penetrance in OHT in population-based studies. However, our number of 

POAG cases was much lower than expected, given the typical prevalence of POAG in 

Europe (2.51%).94 Hence, the “true” penetrance of p.Gln368Ter in POAG is likely to be larger 

than estimated in the UKB samples here. This again may reflect the bias of a volunteer-

based study design.187 We also proposed a method to calculate the penetrance of 

p.Gln368Ter based on its OR, MAF and disease frequency (eMethod in the Supplement). 

According to our proposed method, if the prevalence of glaucoma and POAG was 2.93% 

and 2.51%, respectively, in population over 40 years old, using the ORs and MAF of 

p.Gln368Ter from the UKB, the estimated overall penetrance of p.Gln368Ter for glaucoma 

and POAG was derived to be 10.7% and 15.1%, respectively.  
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The penetrance of p.Gln368Ter with respect to OHT and glaucoma combined is a more 

comprehensive indicator. Our study showed that in p.Gln368Ter carriers, the cumulative risk 

of OHT or glaucoma was 38.69% at age 65 years in the population-based study and 95.96% 

in glaucoma-based registries; p.Gln368Ter genotyping has great potential for early 

identification of individuals at risk for developing these eye diseases.116,181,188  

 

The penetrance of p.Gln368Ter with respect to glaucoma in UKB was lower than family 

studies. There are several potential reasons. On the one hand, estimates from family studies 

may have been inflated by ascertainment bias. On the other hand, the penetrance in general 

population-based studies may be underestimated due to undersampling of cases. 

Furthermore, it remains possible that aggregated genetic and environmental risk factors in 

family studies may have led to increased penetrance in p.Gln368Ter carriers. Recruitment 

based on families with multiple affected individuals is likely to lead to an increase in the 

number of common variants of individually small effect (polygenes) in a family, potentially 

increasing the penetrance of variants such as p.Gln368Ter. This supports the use of 

cascade testing as close relatives share the same genetic background. 

 

Limitations 

This study has some limitations. The genotypes of p.Gln368Ter in UKB are based on best-

guessed imputed genotypes. Reassuringly, our previous study presented evidence that the 

p.Gln368Ter variant could be imputed with high accuracy.114 Thus, the imputed genotype is 

unlikely to make a meaningful difference in our results. Another limitation of the UKB study 

is that some glaucoma cases were defined by self-reported questionnaires, which could lead 

to recall bias. However, our study is one of the largest studies to investigate the penetrance 

and risk effect of p.Gln368Ter in OHT, which could serve as a proxy for glaucoma or 

POAG.117 Furthermore, glaucoma cases with eye disorders may be less likely to participate 

the UKB project compared with healthy individuals,187 which could lead to a lower estimated 

penetrance of p.Gln368Ter in glaucoma. Moreover, in ANZRAG/GIST, the controls were 

genotyped on different platforms. As a sensitivity analysis, we substituted the Australian 

controls for controls from UKB; our results were essentially unchanged. Finally, some 

individuals with high IOP present in the UKB cohort may be on medications or have 

undergone ophthalmic surgery to reduce their IOP levels. In our sensitivity analysis to adjust 

for the change in IOP post-medication, when we added 25% to the measured IOP levels for 
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individuals taking IOP-lowering medications,119,189 the resultant OR and penetrance with 

respect to OHT only increased slightly. 

 

Conclusions 

Our study suggests that the MYOC p.Gln368Ter variant has a high penetrance in OHT and 

glaucoma. Genetic testing for p.Gln368Ter could help identify individuals who are at greater 

risk of developing glaucoma and direct them to early screening and appropriate 

management. 
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Chapter 3. Multitrait analysis of glaucoma identifies new risk loci and 
enables polygenic prediction of disease susceptibility and progression 

 

Glaucoma, a disease characterized by progressive optic nerve degeneration, can cause 

visual loss and blindness, which can be prevented through timely diagnosis and treatment. 

We characterize optic nerve photographs of 67,040 UK Biobank participants and use a 

multitrait genetic model to identify risk loci for glaucoma. A glaucoma polygenic risk score 

(PRS) enables effective risk stratification in unselected glaucoma cases and modifies 

penetrance of the MYOC variant encoding p.Gln368Ter, the most common glaucoma-

associated myocilin variant. In the unselected glaucoma population, individuals in the top 

PRS decile reach an absolute risk for glaucoma 10 years earlier than the bottom decile and 

are at 15-fold increased risk of developing advanced glaucoma (top 10% versus remaining 

90%, odds ratio = 4.20). The PRS predicts glaucoma progression in prospectively 

monitored, early manifest glaucoma cases (P = 0.004) and surgical intervention in advanced 

disease (P = 3.6×10-6). This glaucoma PRS will facilitate the development of a personalized 

approach for earlier treatment of high-risk individuals, with less intensive monitoring and 

treatment being possible for lower-risk groups. 
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3.1 Introduction 

Glaucoma refers to a group of ocular conditions united by a clinically characteristic optic 

neuropathy associated with, but not dependent on, elevated intraocular pressure.190 It is the 

leading cause of irreversible blindness worldwide and is predicted to affect 76 million in 

2020.94,95 There is no single definitive biomarker for glaucoma, and diagnosis involves 

assessing clinical features, with characterization of the optic nerve head carrying the 

strongest evidential weight. Primary open-angle glaucoma (POAG) is the most prevalent 

subtype of glaucoma in people of European and African ancestry.94,186 POAG is 

asymptomatic in the early stages, and currently approximately half of all cases in the 

community are undiagnosed even in developed countries.183 Early detection is paramount, 

as existing treatments are unable to restore vision that has been lost, and late presentation 

is a major risk factor for blindness.191 Thus, better strategies to identify high-risk individuals 

are urgently needed,192 and more refined approaches can capitalize on the fact that POAG 

is one of the most heritable of all common human diseases.106,124,193 The lack of a currently 

cost effective screening strategy for glaucoma,192 coupled with very high heritability make 

glaucoma an ideal candidate disease for the development and application of a polygenic 

risk score to facilitate risk stratification. 

 

Overlap of features shared by healthy optic nerves with those in early stages glaucoma, 

makes it a difficult disease to diagnose early, necessitating costly ongoing monitoring of 

patients for progressive optic nerve degeneration.190 Once a glaucoma diagnosis is 

established, rates of progression vary widely between individuals, and considerable time 

can elapse before surveillance techniques adequately differentiate slow from more rapidly 

progressing cases.190 Progressive vision loss from glaucoma can be slowed, or in some 

cases halted, by timely intervention to reduce intraocular pressure using medical therapy, 

laser trabeculoplasty or incisional surgery.190 The ability to predict progression is currently 

crude, with delays in treatment escalation for high-risk individuals an important and 

inevitable consequence, as well as substantial cost and morbidity associated with 

overtreatment of lower risk cases.  

 

The chronicity, heritability, clinical heterogeneity and treatability of POAG make it an ideal 

candidate for genetic risk profiling.194,195 In this study, we evaluated the optic nerve head in 
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67,040 UK Biobank participants (UKB), enabling the largest genome-wide association study 

(GWAS) on optic nerve morphology to date, using vertical cup-disc ratio (VCDR) as an 

endophenotype for glaucoma. We then incorporated additional genetic data from a second 

well established glaucoma endophenotype, intraocular pressure (IOP), and combined this 

with glaucoma disease status using a recently developed multiple trait analysis of GWAS 

(MTAG)53 approach to firstly identify new risk loci for glaucoma, and secondly generate a 

comprehensive glaucoma polygenic risk score (PRS). We examined the impact of newly 

implicated glaucoma genes in independent case-control cohorts from Australia, the United 

States, and the United Kingdom, and then evaluated the utility of the PRS for predicting 

glaucoma risk, and important clinical outcomes in well-characterised cases across a range 

of disease severities. 

 

3.2 Results 

3.2.1 Study design 
Our overall study design is illustrated in Extended Data Fig. 1a. We first conducted a GWAS 

on glaucoma (7,947 cases and 119,318 controls) and on the key endophenotypes for 

glaucoma: VCDR (including new data on 67,040 UKB participants, and International 

Glaucoma Genetics Consortium, IGGC, N = 23,899) and intraocular pressure (including 

data on 103,914 UKB participants and GWAS summary statistics from IGGC, N = 29,578, 

Supplementary Table 1). These data were then combined using MTAG53 to identify new 

glaucoma risk loci and to construct a PRS. The clinical significance of the PRS was 

investigated in advanced glaucoma cases in two populations, and a separate prospectively 

monitored clinical cohort with early manifest glaucoma. The predictive ability of the PRS was 

also explored in other datasets; however, to ensure our results generalize to further cohorts, 

we selected mutually exclusive samples for inclusion in the discovery and testing datasets 

to ensure no sample overlap. When required, we re-derived the PRS to ensure no sample 

overlap (Extended Data Fig. 1 panel b, c and d, and Supplementary Note).  
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Extended Data Fig. 1. Study Design  
The multi-trait analysis of GWAS (MTAG) algorithm was applied to datasets of European descent (unless 
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otherwise specified). In Panel a, MTAG was applied to four datasets (glaucoma case-control GWAS from the 

UKB; GWAS meta-analysis of intraocular pressure (IOP) from the International Glaucoma Genetics 

Consortium [IGGC] and the UKB; Vertical cup-disc ratio [VCDR] GWAS data that was either adjusted for 

vertical disc diameter [VDD] in the UKB dataset; or not adjusted for VDD in the IGGC). Novel variants identified 

through this analysis were then confirmed in two independent data sets; an Australasian cohort of advanced 
glaucoma (ANZRAG) and a consortium of cohorts from the United States (NEIGHBORHOOD). The clinical 

significance of the PRS derived from the MTAG analysis was validated in independent samples; firstly, in 

advanced glaucoma cases (ANZRAG and samples from Southampton/Liverpool in the UK) and secondly, in a 

prospectively monitored clinical cohort with early manifest glaucoma (PROGRESSA). Panel b displays the 

prediction in the Blue Mountains Eye Study (BMES), where we removed the IGGC VCDR and IGGC IOP 

GWAS from the training datasets, given that they contain BMES data. Panel c shows the prediction in the UKB 

glaucoma and ICD-10 POAG cases. Here we removed all glaucoma cases and 3000 controls with IOP/VCDR 
measurements as well as their relatives from UKB VCDR/IOP GWAS. We also evaluated the performance of 

PRS in non-European ancestry (192 cases and 6,841 controls of South Asian ancestry in UKB). Panel d shows 

the cumulative risk of glaucoma in UKB. For the analysis of MYOC p.Gln368Ter carriers (N=965, case=72, 

control=893) participants were stratified into tertiles of PRS. We also examined cumulative risk of glaucoma in 

the general population (i.e. in MYOC p.Gln368Ter non-carriers, N=381,196, case=7381, control=373,815) 

stratifying by deciles of the PRS. The discovery and testing datasets were designed to derive the PRS with no 

sample overlap (Supplement Note). 

 

 

3.2.2 Discovery of novel optic nerve morphology loci 
GWAS of VCDR (adjusted for vertical disc diameter) identified 76 statistically independent, 

genome-wide significant SNPs (66 loci), of which 49 SNPs (43 loci) had not previously been 

associated with VCDR (Supplementary Figure 1, Supplementary Figure 2, and 

Supplementary Table 2). Using LD score regression, we found no evidence for genomic 

inflation (intercept=1.04, SE=0.01, Supplementary Figure 3). The genetic correlation 

between VCDR (adjusted for vertical disc diameter) and glaucoma in UKB was 0.50 

(SE=0.05); the correlation in effect size estimates at the 76 SNPs was 0.60 (P=9.0×10-9, 

Supplementary Figure 4). We further combined UKB VCDR (adjusted for vertical disc 

diameter) GWAS and IGGC VCDR GWAS summary statistics using MTAG, and identified 

107 independent genome-wide significant SNPs (across 90 loci, Supplementary Table 3) 

for VCDR (adjusted for vertical disc diameter). As previously reported, the genetic 

correlation between intraocular pressure and glaucoma was high (0.71),126 but as expected 

the genetic correlation between VCDR (adjusted for vertical disc diameter) and intraocular 

pressure was substantially lower (0.22, SE=0.03).  
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3.2.3 Discovery of novel glaucoma loci via multitrait analysis 
Given the high correlation between glaucoma and its endophenotypes, we then conducted 

a multivariate GWAS (with 8,002,429 SNPs after quality control) to identify 114 statistically 

independent SNPs (107 loci, P < 5×10-8) associated with glaucoma - this includes all 

previously published glaucoma loci as well as 49 novel loci (Figure 1, Supplementary Figure 

5, Supplementary Figure 6, and Supplementary Table 4). At the more stringent multiple 

testing threshold (P < 1 x 10-8) suggested by a simulation study196 95 loci reach significance, 

39 of which are novel (Supplementary Table 4). Half of top SNPs (27 of 49) at these novel 

loci were not associated individually with any of the individual input traits at the genome-

wide significance level (P=5×10-8), and were only found to reach this threshold for glaucoma 

due to the MTAG method leveraging the strong correlation between the input traits. We then 

attempted to replicate the 49 novel SNPs in two independent glaucoma cohorts (ANZRAG 

and NEIGHBORHOOD). Given the much smaller effective sample size of these replication 

cohorts (versus the discovery datasets from the MTAG analysis), we did not expect all of 

the SNPs to be strongly associated - rather if they were genuine associations we would 

expect the ORs to be highly concordant, with some of the smaller ORs being individually 

non-significant. The concordance between the discovery cohort and our replication cohorts 

log ORs was excellent (correlation 0.88, P=1.6×10-36), indicating our multivariate model was 

successful in identifying genuine glaucoma risk loci (Figure 2 and Supplementary Figure 7). 

Of the 49 novel SNPs, nine SNPs were replicated after Bonferroni correction 

(P<0.05/49=0.001, one-sided test, bold text in Supplementary Table 4), 26 SNPs were 

associated at a nominal significance level (P<0.05, one-sided test, italic text in 

Supplementary Table 4), and 46 (94%) were in the expected direction. Whilst the 

concordance between the multivariate and the glaucoma replication sample log ORs was 

high, only nine of the 49 loci were associated with glaucoma after correction for multiple 

comparisons, and further studies are required to replicate the remaining 40 loci for 

glaucoma.  

 

We conducted a genome-wide gene-based association analysis and a gene set enrichment 

analysis to assess which predefined biological pathways were enriched in our multitrait 

glaucoma GWAS - we found 196 genes and 14 gene sets, respectively, that were significant 

after Bonferroni correction (Supplementary Table 5 and Supplementary Table 6). The most 

significant pathways were also previously implicated (i.e. extracellular matrix, collagen, and 
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circulatory system development).126,197 Further studies are warranted to investigate the role 

of these pathways in the risk of glaucoma. 

 

 

Figure 1. Manhattan plot displaying glaucoma-specific P values from the multi-trait 
GWAS (MTAG) analysis.  
The samples used in multi-trait analysis are presented in Extended Data Fig.1a.  Novel SNPs are 

highlighted in red dots, with the nearest gene names in black text. Known SNPs are highlighted in 

purple dots, with the nearest gene names in purple text. The red line is the genome-wide significance 

level at 5×10-8. 
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Figure 2. Comparison of the effect sizes (log odds ratio) for 114 genome-wide 
significant independent SNPs identified from the glaucoma multiple trait analysis of 
GWAS in the UKB versus those in independent glaucoma cohorts (meta-analysis of 
ANZRAG and NEIGHBORHOOD).  
Pearson’s correlation coefficient is 0.88 (P value=1.6×10-36). The red line is the best fit line, with the 

95% confidence interval region in grey. Novel glaucoma SNPs are highlighted in red and known 

SNPs in purple. 

 

 

3.2.4 Optimizing prediction of glaucoma risk by combining correlated 
traits 
We derived our PRS based on the MTAG of GWAS data from glaucoma and its 

endophenotypes. As well as increasing the number of SNPs that reach genome-wide 

significance (mean chi-squared statistic increased from 1.12 to 1.30, implying our effective 

sample size was 2.59 times larger than if we had used UKB glaucoma cases and controls 

alone), our multivariate model improved the power of risk prediction by reducing the error in 

the estimate of the effect size for every SNP (assuming the MTAG homogeneity assumption 

is true, see discussion).53!"#!$%&'(!(#'(#)!(*#!)%'+&%,%-.(/&0!1/2#&!/$!(*#!34567)#&%8#)!9:;!

%-!(*#!5<=:56!+/*/&(!/$!.)8.-+#)!>?.@+/,.A!"#!$/@-)!;<9'!2%(*!3456!9!8.?@#'!BCACCD!
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E+/&&#'1/-)%->! (/! FGHIJ! @-+/&&#?.(#)! ;<9'! .$(#&! KL7+?@,1%->! .(! &2 = 0.1 and P value 

threshold at 0.001) had the highest Nagelkerke R2 (13.2%) and AUC (0.68, 95%CI: 0.67-

0.70) (Supplementary Table 7). The MTAG PRS has better prediction ability than any of the 

input traits alone (Supplementary Table 8).  Based on this we set the P value threshold at 

0.001 for all the remaining prediction target sets (PROGRESSA, Blue Mountains Eye Study 

[BMES], UKB).  

 

The MTAG-derived PRS was effective at separating advanced glaucoma individuals in 

terms of risk, with a clear dose-response over deciles (Figure 3a, Supplementary Figure 8). 

In ANZRAG, individuals in the top decile of the PRS had 14.9-fold higher risk (95%CI: 10.7-

20.9) relative to the bottom decile, with even better discrimination for the more common 

high-tension glaucoma (OR=21.5, 95%CI: 12.5-37.0) than normal-tension glaucoma 

(Supplementary Figure 9). We replicated the dose-response of the PRS in a smaller UK 

advanced glaucoma dataset (Southampton and Liverpool); the top versus bottom PRS 

decile had OR=11.6 (95%CI: 6.0-25.3), with again better discrimination for high-tension 

glaucoma (OR=12.9, 95%CI: 6.2-31.3). While comparing the top and bottom deciles shows 

the dose-response across deciles, one can also consider the risk in the high PRS individuals 

versus all others; when this is done in ANZRAG, the OR is 4.2 and 8.5 in the top 10% and 

1%, respectively, of individuals versus all remaining individuals (Supplementary Table 9).   
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Figure 3. Multiple trait analysis of GWAS PRS prediction. 
Panel a shows the odds ratio (OR) of developing advanced glaucoma in the ANZRAG cohort (with 1,734 

advanced glaucoma cases and 2,938 controls) for each PRS decile. The square dots are the OR values 

(adjusted for sex and the first four principal components) and the error bars are 95% confidence interval. The 

dashed line is the reference at the bottom PRS decile (OR=1). Panel b shows the AUCs of PRS in BMES. The 

MTAG-derived PRS provided additional predictive ability on top of traditional risk factors (age, sex, and self-

reported family history (FH), DeLong's test P value 0.002). The AUC is based on a logistic regression model 

with the coefficients for age, sex, FH and PRS estimated from the BMES data (Supplementary Table 10). 
Panel c displays the cumulative risk of glaucoma in UKB MYOC p.Gln368Ter carriers stratifying by the PRS 

(adjusted for sex and first six genetic principal components). Here the cumulative risk of tertiles (with 95% 

confidence intervals) of PRS are displayed given the relatively small number of MYOC p.Gln368Ter carriers 

(N=965). Panel d plots the cumulative risk of glaucoma for people in the top and bottom decile (with 95% 

confidence intervals) of PRS of the UKB who do not have the MYOC p.Gln368Ter variant (adjusted for sex 

and first six genetic principal components). The dashed line is the reference line of cumulative risk at 3%.  
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3.2.5 Glaucoma risk score performance in individuals carrying high 
penetrance variants  
Previous studies indicated that PRS modifies the penetrance of rare BRCA1/2 mutation 

carriers for breast, ovarian, and prostate cancers.31,198 Although the MTAG-derived PRS 

only contains common variants, given it indexes general glaucoma risk, we hypothesized 

that it could stratify individuals carrying known high-penetrance glaucoma variants. 

Pathogenic MYOC (Myocilin) gene variants account for 2-4% of POAG cases among most 

populations, the most common disease causing variant being p.Gln368Ter (rs74315329).116 

Penetrance is age-related and is lower in population-based than family based studies.43,116 

We speculated that this difference in penetrance could be due to enrichment of common 

glaucoma associated variants in families modifying age related penetrance. Within UKB, we 

identified 965 MYOC p.Gln368Ter carriers based on imputation (Supplementary Note).114 

Figure 3c shows the cumulative risk of glaucoma in p.Gln368Ter carriers, stratifying by PRS 

tertiles. For p.Gln368Ter carriers in the lowest tertile PRS, glaucoma risk remained very low 

(2%) up to age 60. In contrast, the highest tertile PRS group had substantially increased risk 

of early diagnosis, reaching a 6-fold increase in absolute risk of glaucoma by age 60, relative 

to the lowest PRS tertile (considering whole age range, hazard ratio=3.4, 95%CI: 1.7-6.6). 

This supports the utility of PRS in optimizing risk stratification and prediction, and early 

screening for patients carrying high penetrance MYOC variants in the presence of high PRS 

scores. 

 

3.2.6 Potential for glaucoma risk score in screening in the general 
population 
We considered a general population screening scenario using UKB (PRS was re-derived to 

ensure no sample overlap, Extended Data Fig. 1d), where we excluded the 965 MYOC 

p.Gln368Ter carriers. Over the 40-69 year old age range for individuals sampled in UKB, 

glaucoma prevalence increases from 0.1% at age 40, reaching 3% (95%CI: 2.9-3.1%) by 

age 64. The MTAG-derived PRS stratifies UKB participants very effectively; for those in the 

top PRS decile, 3% prevalence (prevalence in general population) is reached by age 59, 

whilst it takes an additional 10 years for this disease prevalence to be reached for people in 

the bottom PRS decile. Alternatively, the prevalence can be well stratified by PRS deciles 
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(Figure 3d).  

 

To benchmark the performance of the MTAG-derived PRS with traditional risk factors, we 

computed the AUC in datasets for which this was possible: BMES, UKB glaucoma (broad 

glaucoma definition), and UKB POAG (ICD-10 definition) (Figure 3b, Supplementary Table 

11, [PRS was re-derived to ensure no sample overlap], Extended Data Fig. 1). In the BMES 

our PRS provided additional predictive ability beyond that imparted by traditional risk factors 

(age, sex, and self-reported family history (FH)), with a statistical significant change in the 

AUC (from 0.73 to 0.80, P=0.002, Figure 3b). Clear improvement in prediction using this 

PRS is also observed in people of South Asian ancestry (Supplementary Table 11), though 

we were underpowered to explore this further across other groups.  

 

A previous study examined the cost-effectiveness requirements for glaucoma screening and 

highlighted the key age 50-60 bracket.192 In the BMES data (Extended Data Fig. 1b), 

screening only those with a top decile PRS identified 40% of all early onset cases in age 50-

60 bracket (40% of the 10 cases, P=0.013). Such individuals represent a set of individuals 

likely to benefit from referral for immediate clinical assessment — with skilled clinical 

examination, retinal imaging, and visual fields. We replicated this result in the UKB POAG 

cohort (ICD10 cases in Extended Data Fig. 1c, top 10% PRS screening finds 29% of 24 

cases aged 50-60, P=0.0075). In this way, PRS-based screening would satisfy the cost-

effectiveness requirements of Burr et al192, identify a meaningful proportion of cases, and 

capture those cases most at risk of severe disease.  

 

3.2.7 Clinical implications of the glaucoma risk score 
We evaluated the predictive power of the PRS in advanced glaucoma; in 1,336 ANZRAG 

advanced POAG cases with accurate age at diagnosis information available 

(Supplementary Table 12), the PRS was significantly associated with age at diagnosis of 

POAG (P=1.8×10-5). Individuals in the top 10% of the PRS distribution were on average 

diagnosed 7 years younger than people in the bottom 10% (Figure 4a). We also found 

ANZRAG individuals with higher PRS had more family members affected by glaucoma 

(P=3.5×10-9), with the highest decile having twice as many members affected 

(Supplementary Figure 10). 

 



 

 
69 

Retinal nerve fibre layer thinning is a major structural change evident in early stage 

glaucoma.199 In the early manifest glaucoma (PROGRESSA) cohort the PRS predicted both 

the proportion lost, and rate of loss of peripapillary retinal nerve fibre layer. Given that 

glaucomatous loss of retinal ganglion cells generally progresses unequally between eyes, 

with some quadrants of the retina damaged more rapidly than others, we analysed the most 

affected quadrant of the most affected eye in individuals with early manifest glaucoma and 

greater than two years of longitudinal optical coherence tomography data. The PRS was 

significantly associated with the proportion of retinal nerve fibre layer lost from baseline to 

most recent review, even after adjustment for known risk factors; age, intraocular pressure 

and retinal nerve fibre layer thickness at presentation (P=0.004; Figure 4b, Supplementary 

Table 13). Expressed in terms of rate of loss, each decile change in PRS was associated 

with an accelerated progression rate of 0.05 µM/year, which was twice the rate of thinning 

per mmHg (approximately 1 decile change for intraocular pressure) of baseline intraocular 

pressure (0.022 µM/year). 

 

Incisional surgery for glaucoma (trabeculectomy) is highly effective at reducing intraocular 

pressure, but has important complications which can adversely impact vision.190 

Trabeculectomy is performed either when intraocular pressure is unable to be controlled 

with medical or laser therapy, or when there is progressive visual field loss despite well 

controlled intraocular pressure. Patients with a high PRS were more likely to have 

undergone surgery for glaucoma (Figure 4c, Supplementary Figure 11). In the ANZRAG 

cohort of POAG cases, a higher PRS was associated with requiring trabeculectomy, even 

after adjustment for maximum recorded intraocular pressure and age (P=3.6×10-6), the OR 

of requiring trabeculectomy in either eye for people in the top PRS decile was 1.78 (95%CI: 

1.07–3.00) compared to the bottom decile. We observed a very similar trend in our UK 

replication (Southampton/Liverpool) samples (Supplementary Figure 11).  
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Figure 4. Clinical implications of the glaucoma PRS  
Panel a shows the mean age at diagnosis (years) for each decile of PRS in the ANZRAG cohort (linear 

regression P=1.8×10-5). A total of 1,336 cases had accurate age at diagnosis information. We calculated the 

mean age at diagnosis for each decile of PRS, adjusted for sex and the first four principal components in a 

linear regression model. The square dots are the regression-based mean age at diagnosis, with error bars for 

95% confidence intervals. The red line is the line of best fit, with 95% confidence intervals in grey. Panel b 

shows the proportion of preserved baseline retinal nerve fibre layer for PROGRESSA participants with early 

manifest glaucoma plotted against PRS decile (N=388; linear regression P=0.004). The square dots are the 
retinal nerve fibre layer proportions, with error bars showing 95% confidence intervals. The remaining retinal 

nerve fibre layer proportion is calculated for the most affected quadrant of the most affected eye of each patient 

— as determined on optical coherence tomography scans at baseline and latest follow-up scan. Panel c 

displays the proportion of patients requiring trabeculectomy in either eye in the ANZRAG POAG cohort (linear 

regression P=3.6×10-6). There were 1,360 cases with records of surgical treatment status. The square dots 

represent the observed average proportion of cases in each decile of PRS who required trabeculectomy, with 

95% confidence interval bars. The line of best fit is shown in red, with 95% confidence interval shaded in grey.  
 

 

3.3 Discussion 

Through a large-scale multivariate GWAS we identified novel genes for glaucoma, the 

leading cause of irreversible blindness worldwide.94 Despite a smaller replication cohort, 

many of these novel hits were replicated, and all but three SNPs showed a consistent 

direction of effect. We then expanded this analysis to derive a PRS and interrogated its utility 

across a wide spectrum of clinically relevant glaucoma outcomes.  

 

From the multivariate GWAS, we identified 49 novel loci associated with glaucoma (nine of 

which replicated after correction for multiple comparisons in independent glaucoma case-
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control cohorts; 26 were replicated with P<0.05). Interestingly, most of the loci replicated at 

P<0.001 are genes previously associated with glaucoma risk factors (myopia, CCT, IOP, 

VCDR). Specifically, RSPO1 is associated with ocular axial length.200 BICC1 is associated 

with myopia and corneal astigmatism.201,202,203 POU6F2 modulates corneal thickness and 

increases glaucoma risk in animal experiments.204 FBXO32, PTPN1, and VPS13C are 

associated with IOP,125,126,131 whilst CASC20 was identified in our VCDR (adjusted for 

vertical disc diameter) GWAS. These findings show our multivariate GWAS improves power 

to identify novel glaucoma genes and advance our understanding of the causes of glaucoma 

risk. 

 

The MTAG-derived PRS was validated in independent samples, confirming its high 

predictive ability. Individuals in the top PRS decile were at 15-fold increased risk of advanced 

glaucoma, and at 21.5-fold increased risk of advanced high tension glaucoma, relative to 

the bottom decile; a substantial improvement on previously reported genetic profiling 

strategies (where, based on SNPs that were genome-wide significantly associated with 

intraocular pressure and SNPs previously associated with VCDR and glaucoma, top decile 

individuals had a 5.6-fold increased risk).126 This new glaucoma PRS also outperforms those 

derived from other well-studied conditions; for example our OR comparing the top 1% PRS 

individuals versus the remaining individuals was 8.5 which is higher than that seen in a 

recent study which surveyed coronary artery, atrial fibrillation, type 2 diabetes, inflammatory 

bowel disease and breast cancer.33 The aetiology of complex diseases depends on both 

environmental and genetic factors, thus PRS alone will never achieve the very high 

predictive power (e.g. AUC >0.99) required for accurate population screening.36 Our 

glaucoma PRS will be primarily useful for stratifying individuals into risk groups; for example 

in the BMES data, screening the top decile of the PRS in individuals between 50-60 years 

old identifies 40% of cases. Moreover, as argued by Khera et al33, individuals with a high 

PRS for glaucoma are likely to be at a similar risk to individuals carrying rare “high 

penetrance” MYOC mutations.43 Finally, the PRS performance for glaucoma is particularly 

noteworthy given the clinical implications of identifying at-risk individuals and the prevention 

of irreversible blindness with readily available treatment proven to be effective at preventing 

visual loss. 

 
Whilst current treatments are effective in preventing or reducing POAG progression,195 many 

patients are not diagnosed before irreversible damage to visual function has already 
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occurred. Earlier diagnosis of glaucoma can reduce glaucoma blindness, and our work 

demonstrates that people with a higher PRS require earlier clinical assessment. In the UKB, 

individuals in the top PRS decile reach an equivalent absolute risk for glaucoma 10 years 

earlier than people in the bottom decile. In advanced glaucoma cases, individuals in the top 

decile were diagnosed 7 years earlier than those in the bottom decile. Similarly, the MTAG-

derived PRS was associated with significantly earlier disease onset in UK Biobank MYOC 

p.Gln368Ter carriers who are at high disease risk. The MTAG-derived PRS can also identify 

people with early manifest glaucoma who are at higher probability of disease progression, 

as well as the likelihood of requiring surgical intervention, which is highly effective at 

reducing intraocular pressure, but carries substantial treatment morbidity meaning it should 

always be targeted specifically to those at higher risk of disease progression and blindness. 

 

A concern in MTAG method is the homogeneous assumption which could be violated for 

some SNPs that have no effect on one trait but non-null for other traits (i.e. it is possible that 

a small number of the variants may be more specific for IOP or VCDR rather than glaucoma). 

The homogeneity assumption has been studied in detail by Turley et al.53 We have 

evaluated the possible inflation using max False Discovery Rate (maxFDR) as 

recommended by Turley et al.53 The baseline maxFDR for MTAG glaucoma-specific input 

GWAS summary statistics is 0.049, and the maxFDR for MTAG glaucoma-specific output 

summary statistics is 0.03. As these are similar, there is no evidence of inflation due to 

violation of the homogeneity assumption. As recommended by the MTAG authors, we also 

performed replication analysis to assess the credibility of novel SNPs in two independent 

data sets (an Australasian cohort of advanced glaucoma [ANZRAG] and a consortium of 

cohorts from the United States [NEIGHBORHOOD]); this analysis shows there is very good 

concordance between the MTAG based effect sizes and those from the glaucoma cohorts. 

Furthermore, using MTAG output instead of the individual input traits improves the 

predictions in independent cohorts (Supplementary Table 8), providing additional evidence 

that we are not merely identifying IOP or VCDR specific loci that have no effect on glaucoma. 

Further research needs to be undertaken to investigate the biological mechanisms of these 

novel genes on glaucoma risk.  

 
A limitation of this work, is that in our 7,947 UKB glaucoma cases, only a small proportion 

had documented disease subtype; however, since the proportion of UK glaucoma cases 

that have POAG is high (87% in a recent study186), this is unlikely to have a large  influence 
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on our results. A further limitation is that it is not yet clear how applicable our findings are to 

other populations. We showed that the PRS improved prediction accuracy over and above 

traditional risk factors in homogeneous groups (as defined by genetic principal components) 

of either European or South Asian ancestry. The performance of the PRS in other 

populations should be tested to investigate the generalizability of our findings. The 

performance of the PRS in aiding clinical decision making and guiding earlier treatment 

could be evaluated prospectively in a longitudinal intervention study, with participants 

randomized to have their PRS provided or withheld from their treating specialist.  

 
In summary, we have applied a multivariate approach using weighted data on glaucoma, 

and endophenotypes intraocular pressure and VCDR, to identify novel glaucoma loci, and 

develop a polygenic risk score. This PRS was shown to be predictive of: 1) increasing risk 

of advanced glaucoma; 2) glaucoma status significantly beyond traditional risk factors; 3) 

earlier age of glaucoma diagnosis; 4) high levels of absolute risk in persons carrying high 

penetrance glaucoma variants; 5) increasing likelihood of disease progression in early stage 

disease, and 6) increasing likelihood of incisional glaucoma surgery in advanced disease. 

This glaucoma PRS has good predictive power across a range of clinical cohorts and its 

application will facilitate the rational allocation of resources through clinical screening and 

timely treatment in high-risk patients, with reduced clinical monitoring costs in lower risk 

groups. 
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3.4 Methods 

3.4.1 Study Design And Overview 

Our overall study design is illustrated in Extended Data Fig. 1. We first conducted a GWAS 

on glaucoma and on the key endophenotypes for glaucoma: VCDR and intraocular 

pressure. These data were then combined using MTAG,53 a method for combining multiple 

genetically correlated traits to maximize power for identifying new loci and improving genetic 

risk prediction. Specifically, our MTAG analysis outputs glaucoma-specific effect size 

estimates and P-values for single nucleotide polymorphisms (SNPs) across the genome. 

Newly associated loci (P<5×10-8) were validated in two independent cohorts with well-

characterised POAG. We created a PRS based on the MTAG GWAS summary statistics. 

The clinical significance of the PRS was investigated in advanced glaucoma cases in two 

populations, and a separate prospectively monitored clinical cohort with early manifest 

glaucoma. The predictive ability of the PRS was also explored in other datasets; however, 

to ensure our results generalize to further cohorts, we selected mutually exclusive samples 

for inclusion in the discovery and testing datasets to ensure no sample overlap. When 

required, we re-derived the PRS to avoid any sample overlap (Extended Data Fig. 1). Study 

procedures were performed in accordance with the World Medical Association Declaration 

of Helsinki ethical principles for medical research.  

 

3.4.2 Study Populations 

Detailed information of individual studies, phenotypic definitions, and genetic quality control 

procedures are provided in the Supplementary Note. 

 

The UK Biobank (UKB) is a population-based study of half a million people living in the 

United Kingdom.130 We measured VCDR and vertical disc diameter in all subjects with 

gradable retinal images (67,040 participants following exclusions, detailed in Supplementary 

Note) and undertook a GWAS to identify SNPs influencing optic nerve head morphology. 

Vertical disc diameter adjustment of the VCDR was used to account for optic cup and disc 

size covariation.205,206 To improve power in the multi-trait analysis we combined the VCDR 

data with data on corneal-compensated intraocular pressure (103,914 participants), and 

glaucoma (7,947 cases, 119,318 controls) in the MTAG analysis.126 We also used publicly 
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available VCDR and intraocular pressure GWAS summary results for individuals of 

European descent from the International Glaucoma Genetics Consortium (IGGC; 

NVCDR=23,899, Nintraocular pressure=29,578).133 

 

The Australian & New Zealand Registry of Advanced Glaucoma (ANZRAG) comprises 3,071 

POAG cases of European descent, who were compared to 6,750 controls.122,176 For sub-

analyses restricted to advanced POAG, there were 1,734 advanced POAG cases and 2,938 

controls, and of these cases 1,336 participants had accurate age at diagnosis information 

available. Replication of the ANZRAG findings was performed using 332 advanced 

glaucoma cases from Southampton and Liverpool in the United Kingdom; for case-control 

analysis, cases were matched to 3,000 randomly selected European ancestry individuals 

from the QSkin Sun and Health study.207 The National Eye Institute Glaucoma Human 

Genetics Collaboration Heritable Overall Operational Database (NEIGHBORHOOD) GWAS 

results were generated through meta-analyzing summary data from eight independent 

datasets (3,853 POAG cases, 33,480 controls) of European ancestry from the United 

States.208  

 

The Blue Mountains Eye Study (BMES) is a population-based cohort study investigating the 

etiology of common ocular diseases among suburban residents aged 49 years or older, in 

Australia.183 Data from 74 POAG cases and 1,721 controls of European descent with 

genotype information were included. 

 

The Progression Risk Of Glaucoma: RElevant SNPs with Significant Association 

(PROGRESSA) study is a prospective longitudinal study of the clinical and genetic risk 

factors, and course of early-stage glaucoma (N=388). Patients with confirmed early manifest 

POAG on sequential automated perimetry testing were consecutively recruited from 

ophthalmology clinics in South Australia (detailed criteria in Supplementary Note). 

Individuals underwent six-monthly evaluation of intraocular pressure, optic disc assessment, 

retinal nerve fibre layer analysis by optical coherence tomography, and achromatic 

Humphrey visual field perimetry. Longitudinal data were used from all visits since baseline 

presentation; participants were followed for one to eight years. The change in retinal nerve 

fibre layer was measured between the baseline optical coherence tomography and the most 

recent scan in the most-affected quadrant of the most-affected eye. Treating clinicians and 

graders were unaware of the patient’s genetic risk for glaucoma or any PRS data.  
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POAG in the ANZRAG, NEIGHBORHOOD, BMES, and PROGRESSA cohorts was defined 

as outlined previously.91 and in accordance with the consensus statement from the World 

Glaucoma Association.209 Intraocular pressure was not used in the clinical case definition of 

POAG.209 

 

3.4.3 Statistical Analysis 

Detailed information on the statistical analysis is provided in the Supplementary Note. 

 

For the VCDR (adjusted for vertical disc diameter) and intraocular pressure GWAS in UKB, 

we used linear mixed models (BOLT-LMM software) to account for cryptic relatedness and 

population stratification adjusting for sex, age and the first ten principal components.210 We 

meta-analyzed UKB intraocular pressure GWAS results with those from the IGGC using the 

inverse variance weighted method (METAL software).211 For the UKB glaucoma GWAS, we 

removed relatives (pi-hat>0.2 calculated using identity by descent determined based on 

autosomal markers) and used PLINK software for association analysis.182  

 

We then conducted a multitrait GWAS using the MTAG (version 1.0.7) software to combine 

the European descent GWAS summary statistics from UKB glaucoma, UKB VCDR 

(adjusted for vertical disc diameter), IGGC VCDR and the intraocular pressure meta-

analysis (Extended Data Fig. 1).53 MTAG performs joint analysis of GWAS summary results 

from related traits to improve statistical power to identify new genes and to maximize the 

predictive ability of our polygenic risk scores.53 In MTAG, GWAS summary results from 

related traits are used to construct the variance–covariance matrix of their SNP effects and 

estimation error; MTAG improves the accuracy of effect estimates by incorporating 

information from other genetic correlated traits. The MTAG method explicitly models sample 

overlap in the input studies and provides valid estimates even when sample overlap is 

present.53 To benchmark the increase in effective sample size relative to just using UKB 

glaucoma, we calculated (𝜒2MTAG -1) / (𝜒2GWAS-1), where 𝜒2MTAG and 𝜒2GWAS are the mean 

chi-squared statistics from MTAG and the UKB glaucoma analyses, respectively.53  

 

We used a stepwise model selection procedure in the GCTA-COJO software to identify 
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independent genome-wide significant SNPs.212 Gene-based and pathway analysis were 

conducted in MAGMA (v1.06), as implemented in FUMA (version 1.3.1).213,214 

 

Prediction was based on the estimated glaucoma odds ratios (OR) from the MTAG analysis. 

To derive a PRS we considered a range of P-value thresholds (5×10-8, 1×10-5, 0.001, 0.05, 

1) with LD-clumping r2=0.1 for inclusion of SNPs in the prediction model, applying each to 

our first prediction cohort (advanced glaucoma from ANZRAG). To avoid falsely inflating 

prediction accuracy, we applied the threshold with greatest predictive value in ANZRAG (P 

≤ 0.001) for the subsequent predictions into other target sets (rather than repeatedly taking 

the best P-value threshold for each of the datasets). We tested the LDpred44 approach for 

PRS construction although the predictions were no better than those from the thresholding 

approach described above. There was no sample overlap between any of the training and 

target datasets (Extended Data Fig. 1). 

 

Bivariate LD score regression was used to estimate the genetic correlation between pairs of 

traits.73 The “pROC” package was used to calculate the area under the curve (AUC).215 

Analyses were performed with R software.216  
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3.6 Supplement 

Supplementary Note, Figs. 1–13 and Tables 1–13 are available at: 

https://www.nature.com/articles/s41588-019-0556-y  
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Chapter 4A. Genome-wide association analysis of 95,549 individuals 
identifies novel loci and genes influencing optic disc morphology 

Optic nerve head morphology is affected by several retinal diseases. We measured the 

vertical optic disc diameter (DD) of the UK Biobank (UKB) cohort (N = 67 040) and performed 

the largest genome-wide association study (GWAS) of DD to date. We identified 81 loci (66 

novel) for vertical DD. We then replicated the novel loci in International Glaucoma Genetic 

Consortium (IGGC, N = 22 504) and European Prospective Investigation into Cancer–

Norfolk (N = 6005); in general the concordance in effect sizes was very high (correlation in 

effect size estimates 0.90): 44 of the 66 novel loci were significant at P < 0.05, with 19 

remaining significant after Bonferroni correction. We identified another 26 novel loci in the 

meta-analysis of UKB and IGGC data. Gene-based analyses identified an additional 57 

genes. Human ocular tissue gene expression analysis showed that most of the identified 

genes are enriched in optic nerve head tissue. Some of the identified loci exhibited 

pleiotropic effects with VCDR, intraocular pressure, glaucoma and myopia. The genome-

wide genetic correlation between DD and vertical cup-to-disc ratio (VCDR) was very high 

(rg=0.50, P=6.18×10-21), whereas genetic correlation between DD and POAG was very 

small (rg=0.01, P=0.78). These results can enhance our understanding of the genetics of 

optic disc morphology and shed light on the genetic findings for other ophthalmic disorders 

such as glaucoma and other optic nerve diseases. 
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4A.1 Introduction 

The optic disc is an oval structure representing the exit point of the retinal ganglion cell axons 

as they form the optic nerve responsible for transmitting vision to the brain. Anatomically, 

the optic disc can be divided into the neuroretinal rim where the nerves fibre layer turns 

outwards away from the retina, and the optic cup, which does not contain any nerve fibre 

layer and is located more central to the neuroretinal rim. The optic disc is clinically examined 

using fundoscopy and optical imaging technology (such as the Heidelberg Retinal 

Tomography [HRT] or the Optical Coherence Tomography [OCT]) for signs of retinal and 

optic nerve diseases.217,218 Common metrics of the optic disc morphology include the disc 

size (measured as the vertical disc diameter [DD] or disc area) and the vertical cup-to-disc 

ratio (VCDR). Primary open angle glaucoma (POAG) is an optic neuropathy characterised 

by an accelerated loss of the retinal ganglion layer and is a leading cause of blindness 

globally.219 The loss of the retinal ganglion cells manifests as an enlarged optic cup and 

VCDR and is considered a hallmark of POAG.93 

 

A better understanding of factors that influence optic disc size is of high clinical relevance. 

Optic disc size affects the structural morphology of the optic nerve head and may influence 

the vulnerability of the nerve fibres.220 Small optic nerves are associated with disorders such 

as optic nerve hypoplasia and increased risk of non-arteritic anterior ischaemic optic 

neuropathy and optic disc drusen.221,222 There is a strong correlation between the optic disc 

size and the VCDR (clinically and genetically) and this should be taken into account in 

funduscopic examination.223 Adjusting optic disc parameters such as VCDR for disc size 

improves their diagnostic power and clinical utility for glaucoma assessment.224 For 

example, adjusting the VCDR to DD improves its sensitivity of identifying eyes with 

perimetric glaucoma from 67% to 76.6% (at 80% specificity).224 Optic disc morphology traits 

are highly heritable with an estimated heritability of disc size and VCDR of 0.48 - 0.57 from 

family studies while the single nucleotide polymorphism (SNP) -based heritability are 

estimated to range from 0.27 to 0.31.133,225 To date, however, less than 20 genes are shown 

to be implicated with disc size.133,226–230 In this study, we conduct the largest genome-wide 

association study (GWAS) for disc size (triple the previously studied sample size) to 

investigate the development mechanisms of the optic nerve and shed light on the genetic 

understanding for some eye diseases such as POAG and other optic nerve diseases. 
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4A.2 Results 

In the discovery stage, we conducted GWAS on vertical DD in 67,040 UK Biobank (UKB) 

samples, then we replicated the novel associated candidate loci in independent cohorts from 

the International Glaucoma Genetics Consortium (IGGC, N=22,504) and EPIC-Norfolk 

(N=6,005).  

 

4A.2.1 UK Biobank disc diameter GWAS identifies 66 novel loci 
From the vertical disc diameter GWAS of 67,040 UKB participants, we identified 91 lead 

genome-wide significant independent SNPs (81 loci), of which 67 SNPs (66 loci) had not 

previously been associated with disc diameter (Figure 1A, Supplementary Figure S1 and 

Table S1). Interestingly, we also identified two genes located in the X chromosome (EFNB1 

and ZIC3, Supplementary Table S2), which play an important role in eye development.231,232 

We conducted linkage disequilibrium (LD) score regression and observed no evidence for 

genomic inflation (intercept=1.05, SE=0.01, Supplementary Figure S2). As previously 

reported,133 the genetic correlation between disc diameter and VCDR was very high 

(rg=0.50, P=6.18×10-21). The genetic correlation between DD and POAG was very small 

(rg=0.01, P=0.78). The strong association between DD and VCDR is due to the 

physiologically larger vertical cup diameter and optic disc rim area found in larger optic 

discs.223 A higher count of optic nerve fibres is found histologically in eyes with larger optic 

discs,233 representing the larger neuroretinal rim area seen on fundoscopy. The genetic 

correlation of disc size between UKB and IGGC was 0.83 (P=1.31×10-76). 
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Figure 1. Manhattan plot of disc size genome-wide association studies.   
A) UK Biobank dataset; B) UK Biobank and IGGC meta-analysis. Novel loci are highlighted in red 

dots, with the nearest gene names in black text. Known loci are highlighted in purple dots, with the 

nearest gene names in purple text. The red line is the genome-wide significance level (P = 5×10-8). 

 

 

4A.2.2 Replication in IGGC and EPIC-Norfolk datasets 
We then replicated the identified lead vertical DD loci in IGGC and EPIC-Norfolk datasets. 

The correlation in effect size estimates at the lead genome-wide significant SNPs were 0.90 

(P=2.85×10-33, Figure 2), indicating the identified disc diameter SNPs from UKB could be 

well replicated (Supplementary Table S1). Of the 64 novel loci from autosomal 

chromosomes, 19 loci could be replicated in IGGC and EPIC-Norfolk after Bonferroni 
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correction (P=0.05/64=7.8×10-4, Table 1), and 44 loci have nominal association (P=0.05, 

Supplementary Table S1). The X chromosome GWAS results are not available in the IGGC 

and EPIC-Norfolk cohorts. Therefore, further studies are needed to confirm the associations 

of these two X chromosome genes with DD. 

 

 
Figure 2. Comparison of the effect sizes for 91 genome-wide significant independent 
SNPs identified from UK Biobank disc size GWAS versus those in independent cohort 
of IGGC disc size GWAS.   
Pearson’s correlation coefficient is 0.90 (P value=2.85×10-33). The red line is the best fit line, with the 

95% confidence interval region in grey. Novel disc size SNPs are highlighted in red and known SNPs 

in purple. 
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Table 1: List of 19 novel disc size loci replicated in IGGC and EPIC-Norfolk datasets 
after Bonferroni correction. 

SNP CHR BP 
Nearest 

Gene EA NEA FREQ 
BETA 
(UKB) P (UKB) 

Z score 
(META)1 

P 
(META) 

rs12136690 1 116208944 VANGL1 C T 0.76 -0.02 3.1E-24 5.40 6.7E-08 

rs56412756 1 201605477 NAV1 C T 0.92 0.02 2.0E-08 -3.96 7.6E-05 

rs9967780 2 56234942 MIR216B G T 0.78 -0.01 3.0E-09 4.73 2.3E-06 

rs4832012 2 86000500 ATOH8 G C 0.49 -0.01 1.4E-11 3.69 2.3E-04 

rs1365902 2 145470699 TEX41 T C 0.33 -0.01 8.7E-12 -4.91 9.1E-07 

rs3914468 2 170157400 LRP2 A G 0.70 -0.01 2.0E-10 -3.58 3.4E-04 

rs77877421 3 71182447 FOXP1 A T 0.94 -0.03 2.6E-09 -3.47 5.1E-04 

rs72759609 5 31952051 PDZD2 T C 0.90 0.03 3.1E-17 4.02 5.9E-05 

rs58531939 5 87823968 LINC00461 T C 0.91 -0.03 6.3E-16 -4.55 5.3E-06 

rs2092524 6 39529692 KIF6 G A 0.66 -0.01 8.5E-11 4.18 3.0E-05 

rs12661045 6 122682795 HSF2 C T 0.70 0.02 6.1E-14 -3.46 5.5E-04 

rs2152876 6 126761228 CENPW G A 0.54 -0.02 1.5E-18 5.36 8.2E-08 

rs9401928 6 127298394 RSPO3 G A 0.55 -0.02 2.7E-14 4.44 9.0E-06 

rs6999835 8 78948855 PKIA T C 0.63 0.01 5.1E-09 3.74 1.8E-04 

rs10512176 9 89252706 ZCCHC6 T C 0.72 -0.01 3.5E-11 -4.07 4.8E-05 

rs10764494 10 25058144 ARHGAP21 C A 0.32 -0.01 4.7E-10 3.84 1.2E-04 

rs76567987 12 31037655 TSPAN11 A G 0.84 0.02 8.4E-16 4.01 6.1E-05 

rs9534439 13 47192049 LRCH1 T C 0.19 0.02 5.1E-14 4.36 1.3E-05 

rs61985972 14 59550263 DAAM1 A G 0.94 0.03 5.2E-11 5.02 5.2E-07 

Abbreviations: BETA, beta coefficient; CHR, Chromosome; EA, effect allele; FREQ, allele frequency of effect 

allele; NEA, non-effect allele; SNP,  single nucleotide polymorphism; P, P values.  
UKB, UK biobank data; IGGC, International Glaucoma Genetic Consortium; META, meta-analysis results of 

IGGC and EPIC-Norfolk datasets. 

Chromosomal position is based on the NCBI RefSeq hg19 human genome reference assembly. 
1 A sample size weighted meta-analysis was conducted. 

 

 

4A.2.3 Meta-analysis of UKB and IGGC 
We subsequently conducted a GWAS meta-analysis to combine UKB and IGGC disc size 

datasets, and identified 115 independent genome-wide significant SNPs (from 101 loci, and 

an additional 26 novel disc size loci, Supplementary Figure S3 and Table S3).  
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4A.2.4 Functional annotation 
We further investigated the potential biological functions of the identified genome-wide 

significant variants (P<5×10-8). Figure 3A showed the functional categories of the genome-

wide significant variants. We found 0.83% of the significant variants (77 variants from 39 

genes, Supplementary Table S4) located in the exonic regions, and 85% of the significant 

variants were intronic or intergenic. A 15-core chromatin state was evaluated for 127 tissue 

or cell types,214,234 and we found 5.48% (510 variants, Figure 3B and Supplementary Table 

S5) significant variants were active transcription start sites. The RegulomeDB score was 

used to identify regulatory elements, and Figure 3C indicated that 1.36% (113 variants, 

Figure 3C and Supplementary Table S6) significant variants were at least eQTL and 

transcription factor binding sites. Figure 3D presented the Combined Annotation Dependent 

Depletion (CADD) score distribution, which is an integrative metric to measure variant 

deleteriousness.235,236 The higher the score, the more likely that a SNP is deleteriousness 

(suggested threshold 12.37),235 which could be used to prioritize causal variations 

(Supplementary Table S7). 

 

 

 
Figure 3. Functional annotation of genome-wide significant variants (P<5×10-8). 
A) functional categories; B) the minimum chromatin state across 127 tissues; C) the Regulome 
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database score; D) the frequency of SNPs with high CADD score (more than the threshold 12.37). 

For A-C, the numbers and percentages in parentheses in the legends refer to the number of 

significant SNPs and the percentages in all identified significant variants. CADD, combined 

annotation dependent depletion. ncRNA, noncoding RNA; TF, transcription factor; TSS, transcription 

start site; UTR, untranslated region. 

 

 

4A.2.5 Gene-based and pathway analysis 
We then conducted a genome-wide gene-based association analysis and identified an 

additional 57 novel genes (without genome-wide significant SNPs in genes, Supplementary 

Figure S4 and Table S8). For instance, gene THSD4 was associated with eye tail length 

and outercanthal width,237 and genes RNLS, DENND1A, RASGEF1B, FAM150B, and 

NCOA2 were associated with myopia. Tissue expression analysis of GTEx data (V7 30 

general tissue types) indicated the gene expression profiles were enriched in nerve tissue 

(Supplementary Figure S5). Pathway analysis of 10,678 gene sets (MsigDB v6.2, curated 

gene sets: 4,761, Gene Ontology terms: 5,917) resulted in 29 significant gene sets after 

Bonferroni correction, which include sensory organ development, tissue development, and 

morphogenesis (Supplement Table S9). The top pathway is 

RAMJAUN_APOPTOSIS_BY_TGFB1_VIA_MAPK1_UP, which is a transforming growth 

factor-beta (TGFbeta) activated signalling pathway, involved in apoptosis and the regulation 

of cell growth and survival. 238,239 

 

4A.2.6 Genetic correlation with other traits 
We estimated the genetic correlation between disc size and 832 traits in LD-Hub database 

(v1.9.0).240 We only found significant genetic correlation between disc size and myopia (UKB 

data field 6147: Reason for glasses/contact lenses, rg=-0.24, P = 5.94×10-8, Supplementary 

Table S10) after Bonferroni correction (0.05/832).   

We also investigated GWAS Catalog9, a curated collection of published genome-wide 

association studies, for disc size genome-wide significant SNPs (Supplementary Table 

S11). Our results showed some of the lead disc size loci had pleiotropy effects. For instance, 

lead SNPs in genes CDC42BPA and ANKRD55 were associated with macular thickness, 

and lead SNPs in ANKRD55, PRSS56, KCNQ5, NPLOC4, and BMP4 were related to 

myopia.  

 



 

 
90 

4A.2.7 Gene expression in human ocular tissues 
We also investigated the expression profile of the genes nearest to the identified SNPs in 

ocular tissue: optic nerve head, optic nerve, retina, trabecular meshwork, iris, ciliary body, 

sclera, cornea, as well as foetal retinal tissue (Supplementary Table S12, Table S13, 

Supplementary Figure S6 and S7).241 The majority (94/106, 89%) displayed differential 

expression in the optic nerve head relative to all other ocular tissue (Supplementary Table 

S14). BCAS3 (Microtubule Associated Cell Migration Factor), DHRS7 

(Dehydrogenase/Reductase 7) and NPLOC4 (Nuclear Protein Localization Protein 4 

Homolog) were the most significantly differentially expressed genes in the optic nerve head 

and were all novel discoveries. The SNP rs12147505 in DHRS7 with no linkage 

disequilibrium with rs34935520 (in SIX6, R2 < 0.001),133 had the highest magnitude of effect 

on disc size; it is a protein coding gene functioning as a catalyst in oxidation and reduction 

of a wide range of substrates.242 It is expressed in all ocular tissues, with highest expression 

in the corneal stroma followed by the optic nerve head, and suggested to be a risk locus for 

POAG.180 

 

4A.2.8 eQTL and transcriptome-wide association analysis 
We looked up the lead DD genome-wide significant SNPs in retina from the Eye Genotype 

Expression (EyeGEx) database to identify expression quantitative trait loci (eQTL).170 We 

identified 38 SNP-gene pairs (cis-eQTLs) after gene-level multiple testing correction across 

the genome (Supplementary Table S15).  We also conducted summary data-based 

Mendelian randomization (SMR) and heterogeneity in dependent instruments (HEIDI) 

analysis to test the effects of genetic variants on disc size that is mediated by gene 

expression levels.243 From SMR approach, we identified 15 genes after multiple testing 

correction (PSMR< 0.05/5592 = 8.94 × 10-6, Supplementary Table S16). The HEIDI tests 

(PHEIDI!M!CACNO!'@>>#'(#)!(*.(!>#-#'!CTD-2292P10.4, CTNNAL1, MFSD13A, TSPAN11 and 

TANC2 (based on updated EyeGEx database) are associated with DD via the underlying 

GWAS hits. 

 

4A.3 Discussion 

We conducted the largest optic disc size GWAS to date and identified 101 loci including 159 
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genes using manual grading of the UKB fundus photographs. We identified for the first time 

two genes located in the X chromosome (EFNB1 and ZIC3) associated with vertical disc 

diameter. Our results indicate that sensory organ development, tissue development, and 

morphogenesis are involved in the biological pathway for optic disc morphology. The 

discovery of genes and pathways involved in optic disc morphology is important in the 

understanding of the genetic architecture and development mechanisms of optic nerve head 

and would increase our knowledge of diseases related to this - POAG and other optic nerve 

diseases.  

 

The identified optic disc size genes have important functions. For instance, the top two novel 

replicated genes are VANGL1 and CENPW. VANGL Planar Cell Polarity Protein 1 

(VANGL1) regulates the establishment of planar cell polarity, which plays a key role in tissue 

morphogenesis, embryonic development, and the development of eye tissues.244–246 

CENPW encodes Centromere Protein W, which is related to cell cycle, mitotic state, and 

chromosome maintenance.247 The lead SNP rs2152876 in CENPW exhibits a pleiotropic 

effect, as its proxy SNPs (R2 > 0.8) are associated with intraocular pressure131, height248, 

hip circumference249, and the age onset of menarche250. The encoded protein by STRA6 

acts as a receptor for retinol-binding protein responsible for the cellular uptake of vitamin A, 

which is critical to the normal development of the eyes.251 Indeed mutations in STRA6 

impairing this function lead to severe developmental abnormalities in the eyes such 

microphthalmia, anophthalmia and coloboma.251,252 SIX3, PRSS56 and PAX6 are also 

involved in the eye development. PAX6 has been labelled as the master control gene for the 

morphogenesis of the eye, and is regulated by the transcriptional regulator SIX3.253 BCAS3 

and RSPO3 are involved in angiogenesis, vascular support and cell migration.254,255 BMP4 

antagonises transforming growth factor-beta 2 (TGF-β2) signalling, a cytoke involved in the 

synthesis and deposition of extracellular matrix in the optic nerve head.256 This pathway is 

implicated in the pathological remodelling of the optic nerve head in glaucoma,256 and 

deficiency of BMP4 results in an abnormal optic nerve with loose connective tissue.257 All 

together, these gene findings help us have a better understanding of the development of the 

eye and related traits. 

 

Optic disc size is highly correlated with the vertical cup-to-disc ratio (VCDR)133, one of the 

main glaucoma endophenotypes, and is important for the interpretation of a glaucomatous 

optic disc.220,223 Clinically, adjusting VCDR to DD improves its utility as larger discs are more 
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likely to have physiologically larger cups.224 In clinical genetics, genes are more likely to be 

involved in the pathogenesis of glaucoma if associated with larger VCDR but not disc size, 

or VCDR adjusted to disc size. For instance, variation in the PDZD2 gene is associated with 

optic cup area and VCDR,133 and our study identifies the same variation to be strongly 

associated with disc size. This would suggest that the observed association with VCDR is 

likely due to the disc size rather than a pathological enlargement of the optic cup. Similarly, 

the previously reported association between F5 and VCDR is likely related to disc size due 

to its larger association with disc size in our study and previously.230 When the disc size is 

adjusted for, Springelkamp et al. have reported the estimated effect size of the F5 variant 

on VCDR is negligible.133 Several of the identified disc size genes are correlated with 

intraocular pressure. For instance, genes TMEM119, CENPW, LTBP1, TEX41, and PKIA 

are reported to be associated with intraocular pressure,125,126,129,131 which could represent 

pleiotropic effects of these genes. Correlating disc size loci with the genes for glaucoma and 

its endophenotypes would help to identify the role of these genes in glaucoma pathogenesis. 

 

Understanding the genetics of optic disc size will also contribute towards the understanding 

of the etiology of myopia.227,258 The clinical morphology of the optic disc in myopic eye is 

distinct and the disc size correlates with the magnitude of the refractive error especially in 

high myopes.259 From the genetic correlation results using LD Hub,240 we found disc size is 

negatively correlated with myopia (rg=-0.24, P=5.94×10-8), and positively correlated with 

hypermetropia (rg=0.24, P=9.18×10-5). Several novel disc size associated SNPs discovered 

in this study have been previously reported to be associated with myopia. Of these, variant 

rs74764079 located in the exonic region of bone morphogenetic protein 3 (BMP3) had a 

large CADD score (24.5). The Serine Protease 56 (PRSS56) and Bone Morphogenetic 

Protein 4 (BMP4) genes are involved in ocular growth as variations in these genes are 

associated with microphthalmia (abnormally small eyes).260–262 Variations in PRSS56 and 

BMP4 are reported to be associated with myopia in previous GWAS.202,263 Our results 

support the involvement of these genes in optic disc morphology. The tetraspanin 10 

(TSPAN10) gene is involved in cellular protein trafficking and regulation and organ 

development.264 Variations in TSPAN10 and NPLOC4 are associated with myopia and 

macular thickness (derived from ocular coherence tomography [OCT] scans).201,265 The 

association with optic disc size further supports their involvement in eye development. 

 

There are several limitations for this study. Firstly, we only evaluated individuals of European 
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ancestry in our disc size GWAS, hence the generalizability of the genetic findings to other 

populations remains unclear. However, the concordance in lead SNP effect sizes was also 

very high between UKB disc size GWAS and IGGC disc size GWAS in Asian population 

(Pearson’s correlation coefficient 0.72, Supplementary Figure S8). Another limitation is that 

in UKB we measured the vertical disc diameter rather than disc area (measured in IGGC 

dataset). However, in our UKB GWAS, we used the rank-based inverse-normal transformed 

disc diameter, which we subsequently rescaled to disc area (Supplementary Methods).266,267 

In our sensitivity analysis, we used multiple trait analysis of GWAS (MTAG) to joint analyse 

UKB and IGGC disc size summary statistics; the results are essentially identical to traditional 

inverse-variance meta-analysis (Supplementary Table S3, Figure S9, Supplementary 

Methods). Nonetheless, the identified novel loci and genes from meta-analysis and gene-

based analysis still need further studies to replicate these findings. A third limitation is that 

disc size was not available for both the left and right eyes in all cohorts. For instance due to 

the lengthy manual process of grading 67,040 UKB fundus photos, we graded the DD on 

the left eye where the image quality was good, otherwise the right eye was used; however, 

the DD between both eyes are expected to be very similar. In the EPIC-Norfolk sample set 

(N = 6,005), the measurement of the vertical disc diameter was 2.34 ± 0.26 mm in the right 

eyes, compared 2.33 ± 0.26 mm in the left eyes, which is also consistent with previous 

studies.268 A fourth limitation is that although differences in ocular magnification and tilted 

appearance of some optic discs could affect disc size measurements, in practice the effects 

of these are expected to be small 269. In our sensitivity analysis, we adjusted spherical 

equivalent refractive error in UKB disc size GWAS; the results were essentially unchanged. 

 

In conclusion, we conducted a meta-analysis GWAS of 95,549 individuals for disc size and 

identified 101 genomic loci across 159 genes. This study enhanced our understanding of 

the genetics of disc size and would shed light on the genetic findings for other eye traits 

such as VCDR, intraocular pressure, POAG, and myopia.  

 

 

4A.4 Materials and Methods 

Study procedures were performed in accordance with the World Medical Association 

Declaration of Helsinki ethical principles for medical research.  
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4A.4.1 UK Biobank disc diameter phenotype data 
UK Biobank is a large-scale cohort study that included over half a million participants aged 

between 40-69 years in 2006-2010 from across the United Kingdom. In the UKB, 87,685 left 

fundus retinal eye images were available (two assessment visits), covering 84,871 

participants (UKB Field: 21015). The longest vertical DD was measured at the inner edges 

of the scleral ring from non-stereo fundus images obtained using a Topcon 3D OCT-1000 

MKII (Topcon Corporation). The images had a 45o field of view and were cropped and 

enlarged to facilitate grading using a custom Java program.  

Two thousand images were randomly selected for quality control, and the Pearson's 

correlation coefficient of the DD measurements between the two examiners was 0.64 (95% 

confidence interval [CI]: 0.61-0.67; supplementary Figure S10). The second visit DD 

measurements were used if available, otherwise, we used the first visit measurements 

(N=52,199, proportion 76%). If the left eye images were ungradable, we used the right eye 

images instead (N=6,181, proportion 9%, UKB Field 21016). In DD GWAS, we excluded 

non-white British ancestry participants based on principal components (PCs). Finally, 67,040 

participants were included in our analysis. For statistical analysis, we applied a rank-based 

inverse-normal transformation to DD, effectively rendering the results in terms of disc area 

(see statistical methods, below). 

 

4A.4.2 UK Biobank genotype data 
Detailed information of the genotype data and quality control procedures for UKB was 

reported by Bycroft and colleagues.130 Briefly, approximately 488,000 participants were 

genotyped for 805,426 markers on Axiom arrays (Affymetrix Santa Clara, USA). After 

standard quality control procedures, ~96M genotypes were imputed using Haplotype 

Reference Consortium (HRC) and UK10K haplotype resources.130,270,271 In the association 

analysis, we removed single nucleotide polymorphisms (SNPs) with minor allele frequency 

(MAF) less than 0.01 or imputation quality score less than 0.3. Finally, 8,928,767 SNPs were 

kept for association analysis.  

 

4A.4.3 IGGC disc size summary statistics 
The phenotype and genotype data of disc size for IGGC have been previously described 

elsewhere.133 We downloaded the publicly available disc area GWAS summary statistics for 
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22,504 individuals of European ancestry from IGGC. In IGGC, the genetic data was imputed 

to 1000 Genomes reference panel, and the disc area GWAS was adjusted for age, sex and 

the first five principal components.133  

 

4A.4.4 EPIC-Norfolk Eye Study 
The European Prospective Investigation into Cancer (EPIC) study is a pan-European 

prospective cohort study designed to investigate the aetiology of major chronic diseases.272 

EPIC-Norfolk, one of the UK arms of EPIC, recruited and examined 25,639 participants 

between 1993 and 1997 for the baseline examination.273 Recruitment was via general 

practices in the city of Norwich and the surrounding small towns and rural areas, and 

methods have been described in detail previously. Ophthalmic assessment formed part of 

the third health examination and this has been termed the EPIC-Norfolk Eye Study.274 

In total, 8,623 participants were seen for the Eye Study between 2004 and 2011. Digital 

photographs of the optic disc and macula were taken using a TRC-NW6S non- mydriatic 

retinal camera and IMAGEnet Telemedicine System (Topcon Corporation, Tokyo, Japan) 

with a 10-megapixel Nikon D80 camera (Nikon Corporation, Tokyo, Japan). Pupils were not 

dilated. Images were graded at the Moorfields Reading Centre. Measurement of the vertical 

diameter of the optic disc was made using adobe photoshop C55 software. 

99.7% of EPIC-Norfolk are of European descent and we excluded participants of non-white 

European ancestries. The EPIC-Norfolk Eye Study was carried out following the principles 

of the Declaration of Helsinki and the Research Governance Framework for Health and 

Social Care. The study was approved by the Norfolk Local Research Ethics Committee 

(05/Q0101/191) and East Norfolk & Waveney NHS Research Governance Committee 

(2005EC07L). All participants gave written, informed consent. 

Initial genotyping on a small subset of EPIC-Norfolk was undertaken using the Affymetrix 

GeneChip Human Mapping 500K Array Set and 1,096 of these participants contributed to 

the IGGC meta-analysis.133 Subsequently, the rest of the EPIC-Norfolk cohort were 

genotyped using the Affymetrix UK Biobank Axiom Array (the same array as used in UK 

Biobank); it is 6,005 of these participants (which includes no overlap with the 1,096 

participants contributing to the IGGC meta-analysis133) that contributed to the EPIC-Norfolk 

disc size GWAS in the current study. SNP exclusion criteria included: call rate < 95%, 

abnormal cluster pattern on visual inspection, plate batch effect evident by significant 

variation in minor allele frequency, and/or Hardy-Weinberg equilibrium P < 10-7. Sample 
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exclusion criteria included: DishQC < 0.82 (poor fluorescence signal contrast), sex 

discordance, sample call rate < 97%, heterozygosity outliers (calculated separately for SNPs 

with minor allele frequency >1% and ≤ 1%), rare allele count outlier, and implausible identity-

by-descent values. We removed related individuals with pairwise relatedness corresponding 

to third-degree relatives or closer across all genotyped participants. Following these 

exclusions, there were no ethnic outliers. Data were pre-phased using SHAPEIT version 2 

and imputed to the Phase 3 build of the 1000 Genomes project (October 2014) using 

IMPUTE (version 2.3.2). 

We examined the relationship between allele dosage and mean of right and left vertical disc 

diameter using linear regression adjusted for age, sex and the first five principal 

components. Analyses were carried out using SNPTEST software (version 2.5.1).275 

 

4A.4.5 Ocular gene expression analysis 
Gene expression data was available from RNA extraction of 21 healthy donor eyes from 21 

individuals. We analysed 63 tissues of cornea (epithelium, stroma and endothelium), 

trabecular meshwork, ciliary body, iris, retina, optic nerve and optic nerve head. RNA quality 

was assessed using Agilent Bioanalyzer 2100 RNA 6000 Nano Assay and samples were 

included for sequencing only if the RIN scores were greater than or equal to 3.8 and both 

28S and 18S ribosomal RNA intensity peaks were prominent. RNA sequencing was done 

using Illumina NextSeq® 500 (San Diego, USA), followed by quality check (FASTQC 

v0.11.3). Trimgalore (v0.4.0) was used to trim low quality bases (Phred score < 28) and 

reads shorter than 20 bases after trimming were discarded. All reads which passed every 

quality control step were then aligned to the human genome (GRCh38 assembly) with ≤ 2 

mismatches per read. Downstream analysis was done with edgeR (version 3.22.5).276 We 

selected genes expressed 10 times (1.5 counts per million) in at least 5 tissue samples and 

normalised the libraries using trimmed mean of M-values (TMM).277 Estimating dispersions 

was done via Cox-Reid profile-adjusted likelihood method,278 and differential expression was 

compared between optic nerve head and all other tissues via negative binomial generalised 

linear model.279 Genes were filtered to those nearest to the identified SNPs, and the 

differential expression P-values were adjusted using Bonferroni correction. 

 

4A.4.6 Genome-wide association analysis and meta-analysis  
For DD GWAS in UKB, we first applied a rank-based inverse-normal transformation.267 
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Since disc diameter and disc area are monotonically related, applying such a transformation 

makes the phenotype correlation between diameter and area effectively approach one, 

although to render them back to the same output scale, one should multiply by the standard 

deviation of the trait, which is approximately 0.4 mm2 for disc area.133 To ensure consistency 

with previously reported results, all our analyses are presented on the disc area scale.133 

For association analysis in UKB, we used a linear mixed model in BOLT-LMM software 

(version 2.3).210 Analysis was performed under an additive genetic model, adjusted for the 

effect of sex, age, the first ten principal components, two indicator variables for examiners 

who performed the measurements, and fundus retinal image assessment visits. (84) A 

stepwise model selection procedure in the GCTA-COJO software (version 1.91.7beta) was 

used to identify independent lead genome-wide significant SNPs.212 We reported 

independent SNPs with both unconditional P values and joint P values less than 5×10-8. For 

genomic regions with multiple independent SNPs, we defined a ‘locus’ as a region at least 

400 kilobases from the adjacent locus. Bivariate linkage disequilibrium (LD) score regression 

was used to estimate the genetic correlation between pairs of traits.73 To replicate the lead 

SNPs from UKB, we conducted a sample size based meta-analysis in METAL (2011-03-25 

release) for IGGC and EPIC-Norfolk datasets.211 For the UKB and IGGC meta-analysis, we 

performed the inverse-variance weighted fixed-effect meta-analysis in METAL.211 In our 

sensitivity analysis, rather than performing meta-analysis using the effect size estimates and 

standard errors, we also conducted the multiple trait analysis of GWAS (MTAG, software 

version 1.08) approach, a framework to generalize the standard inverse-variance meta-

analysis method, with the approach able to joint analyse the same trait with different 

measures or even different traits with a high genetic correlation.53 The general analyses 

were performed with R software (version 3.4.1).216 Additional details are provided in 

supplementary Methods. 

 

4A.4.7 Gene-based and pathway tests 
We used MAGMA (v1.07) for gene-based and pathway analysis as implemented in FUMA 

(version 1.3.4).213,214  In gene-based tests, GWAS summary statistics of SNPs were mapped 

to 18,619 genes, and the association P values for a set of SNPs were calculated. The default 

parameters in FUMA were used. Bonferroni method was used for multiple testing correction 

(P < 0.05/18,619). In pathway tests, 10,678 predefined gene sets (MsigDB v6.2, curated 

gene sets: 4,761, GO terms: 5,917) were tested for enrichment.   
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4A.4.8 Functional annotation 
The functional annotation of SNPs was implemented in FUMA (version 1.3.4).214 Firstly, the 

functional annotation of SNPs on the genes were obtained from ANNOVAR.280 The detailed 

annotations included downstream, exonic, intergenic, and upstream. We then checked the 

chromatin states of the SNPs. The 15-core chromatin states were predicted by ChromHMM 

software based on 5 chromatin marks for 127 epigenomes.234 We also looked up the 

Regulome database score and CADD score.235,281 Briefly, the Regulome database score 

represents the evidence of regulatory function of SNPs based on eQTLs and chromatin 

marks. The highest score 1a means that those SNPs may affect regulatory elements while 

score 7 means not regulatory. CADD score is an integrative metric to measure variant 

deleteriousness of SNPs predicted by 63 functional annotations. The higher the score, the 

more likely that a SNP is deleteriousness (suggested threshold 12.37),235 which could be 

used to prioritize causal variations. 

 

4A.4.9 eQTL lookup and SMR method 
The lead DD SNPs were looked up in the Eye Genotype Expression (EyeGEx) database of 

retinal tissue to identify retina specific expression quantitative trait loci (eQTL).170 We also 

applied SMR (summary data-based Mendelian randomization) and HEIDI (heterogeneity in 

dependent instruments) tests based on DD meta-analysis summary statistics and the 

EyeGEx eQTL data.243 The SMR approach uses both of GWAS summary statistics and 

eQTL data to test if the effect of a SNP on the phenotype is mediated by gene expression, 

which could be used to prioritize GWAS hits for further functional studies. The HEIDI method 

can test the null hypothesis that there is a single causal variant affecting both gene 

expression levels and phenotype risk.  
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Chapter 4B. Automated AI labelling of optic nerve head enables new 
insights into cross-ancestry glaucoma risk and genetic discovery in over 
280,000 images from the UK Biobank and Canadian Longitudinal Study 
on Aging 

Cupping of the optic nerve head, a highly heritable trait, is a hallmark of glaucomatous optic 

neuropathy. Two key parameters are vertical cup-to-disc ratio (VCDR) and vertical disc 

diameter (VDD). However, manual assessment often suffers from poor accuracy and is time-

intensive. Here, we show convolutional neural network models can accurately estimate 

VCDR and VDD for 282,100 images from both UK Biobank and an independent study 

(Canadian Longitudinal Study on Aging), enabling cross-ancestry epidemiological studies 

and new genetic discovery for these optic nerve head parameters. Using the AI approach 

we perform a systematic comparison of the distribution of VCDR and VDD, and compare 

these with intraocular pressure and glaucoma diagnoses across various genetically 

determined ancestries, which provides an explanation for the high rates of normal tension 

glaucoma in East Asia. We then used the large number of AI gradings to conduct a more 

powerful genome-wide association study (GWAS) of optic nerve head parameters. Using 

the AI based gradings increased estimates of heritability by ~50% for VCDR and VDD. Our 

GWAS identified more than 200 loci for both VCDR and VDD (double the number of loci 

from previous studies), uncovers dozens of novel biological pathways, with many of the 

novel loci also conferring risk for glaucoma.  
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4B.1 Introduction 

The optic nerve head is the exit point of retinal ganglion cell axons from the eye to the 

brain.282 It is commonly assessed during ophthalmic examinations using fundoscopy or 

optical imaging technology for multiple ocular diseases, such as glaucoma, which is the 

leading cause of irreversible blindness globally and is characterized by characteristic 

cupping of the optic disc as a result of retinal ganglion cell apoptosis.90,91 Enlarged vertical 

cup-to-disc ratio (VCDR) is considered a hallmark of glaucomatous optic neuropathy and is 

often used to define glaucoma in general population based prevalence surveys.93 However, 

VCDR alone is not adequate to assess glaucomatous damage in part because of the 

variation of optic disc size. For instance, a vertical cup:disc ratio of 0.5 in a small optic disc 

could be pathologic whereas a vertical cup:disc ratio of 0.8 in a large disc size may represent 

physiologic cupping. Adjusting for optic disc size is hence important to maximizing the 

clinical utility of VCDR in diagnosing glaucoma.  

Family studies have shown that optic disc morphology traits are highly heritable with an 

estimated heritability of 0.48 and 0.57 for VCDR and optic disc diameter, respectively.225 

Large-scale genome-wide association studies (GWAS) for optic disc morphology have 

begun to shed light on the development and pathogenesis of glaucoma and other optic nerve 

diseases.133,206,230 However, both large sample sizes and accurate phenotyping are critical 

in GWAS and further progress will be difficult under the existing manual phenotype 

paradigm. Manual assessment of optic disc photographs is time-intensive and often suffers 

from poor inter-observer concordance, even when performed by trained specialists and an 

alternative approach is required.283,284 Clinical estimates of VCDR are more difficult from 

monoscopic photographs compared with stereoscopic viewing of the optic nerve head which 

can be achieved during slit-lamp biomicroscopy or from stereoscopic photographs.  

 

Recent advances in artificial intelligence (AI) algorithms have shown exciting promise in 

healthcare285, including the automated diagnosis of eye diseases.286,287 With the high 

performance of AI technology, the U.S. Food and Drug Administration approved the first 

medical device to use AI technology to detect diabetic retinopathy in 2018.288,289 The 

probabilistic nature and non-linear capabilities, as well as analytical capabilities to deal with 

single and multimodal, high-dimensional data, has seen application of AI experience lower 

resistance to adoption in the medical field when applied to computer vision applications. Two 
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fundamental properties have facilitated AI application to medical diagnostics. Firstly, the 

problem space (medical imaging) is, relative to other medical domains, well studied and very 

well understood. Secondly, an observation of the output can be quickly validated by a clinical 

practitioner, who by having access to additional clinical or historical data about that patient, 

may suggest alternative diagnosis. A motivating factor driving utilisation of AI on data such 

as fundus images is the large volume of images available for algorithms to be trained on. 

Furthermore, standardised imaging techniques can drastically reduce the dataset 

heterogeneity. This is highlighted by the collection of images as part of the UK Biobank 

(UKB) and the Canadian Longitudinal Study on Aging (CLSA) biobanks completed over a 

decade. Automated diagnosis from retinal fundus imaging has been approached through a 

number of different algorithms, ranging from multi-stage “classical” learning algorithms to 

end-to-end deep learning models.290–293 
 

In this study, a convolutional neural network (CNN) model was utilised in a transfer learning 

approach, training on clinical assessments of the optic nerve head in ~70,000 photographs 

(Labelled Training Data) of UKB participants. Automatic labelling by the CNN model 

dramatically boosts the effective sample size (n=282,100 total images graded), presenting 

an opportunity to greatly expand the utility of the GWAS approach for VCDR and optic disc 

diameter. We also apply the AI labels systematically across the multiple different ancestries 

in UKB and CLSA and investigate how VCDR and other glaucoma risk factors, such as IOP, 

relate to glaucoma risk in different ancestries. 

 

4B.2 Results 

4B.2.1 Study Design And Overview 
The overall study design is summarised in Figure 1. We use transfer learning to train three 

CNN models for image gradability, VCDR, and vertical disc diameter (VDD) values from 

~70,000 UKB fundus images graded by clinicians. These models were then applied to all 

UKB fundus images (85,736 participants and 175,770 images in total) and another 

independent cohort - CLSA (29,635 participants and 106,330 images in total). We performed 

the largest AI-based GWAS for VCDR and VDD, and replicated novel genetic discoveries in 

clinician-graded fundus images from International Glaucoma Genetics Consortium (IGGC) 

and in glaucoma case-control studies (UKB and the Australian and New Zealand Registry 
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of Advanced Glaucoma; ANZRAG). The large scale biobank data for both VCDR and IOP 

also allow us to systematically compare the glaucoma risk and optic nerve head parameters 

across different ancestries.  

 

Figure 1. Flowchart of AI framework and datasets. In UK Biobank (UKB), the fundus retinal eye 

images were available for ~85,000 participants (~68,000 participants in the baseline visit and ~19,000 

participants in the first repeat assessment visit). In our previous study, vertical cup-to-disc ratio (VCDR) and 
vertical disc diameter (VDD) were graded by two clinicians in ~70,000 photographs using a custom Java 

program. These clinical assessments were used as Training Data for three convolutional neural network (CNN) 

models for image gradability, VCDR, and VDD values. The learned models were then applied to all UKB fundus 

images (85,736 participants and 175,770 images in total) and another independent cohort - the Canadian 

Longitudinal Study on Aging (CLSA, 29,635 participants and 106,330 images in total). The AI labels were 

further used to systematically evaluate optic nerve head parameters across the multiple different ancestries in 

UKB and CLSA, and allowed us to perform the largest AI-based GWAS for VCDR and VDD.  

 
 

4B.2.2 Study data and performance of the trained AI model 
In the UKB, 85,736 participants had at least one fundus retinal image, with a total of 175,770 

images available (Table 1). The mean age at baseline was 57.0 (SD: 8.1) years and 54% 

were women. In the CLSA cohort, 29,635 participants with 106,330 images were included 
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in the analysis, of whom 50% were women, and the mean age at recruitment was 62.6 (SD: 

10.0) years.  

We first trained a convoluted neural network to assess if each image was gradable in the 

UKB training sample. We found that most participants (> 95%) had gradable images in the 

UKB and the CLSA cohort (Supplementary Figure 3). We then predicted the measurements 

of both VCDR and VDD, and compared the AI-based measures with clinician gradings. The 

AI-based VCDR and VDD measurements exhibited a higher concordance to clinician 

gradings compared with previous gradings by two clinicians.35,206,294,295 For instance, the 

Pearson's correlation coefficient of the VCDR measurements in the UKB samples was 0.81 

(95% confidence interval [CI]: 0.80-0.81), and 0.84 (95% CI: 0.82-0.86) for an independent 

Canadian data set (CLSA) (Supplementary Figure 4). We therefore speculated that with the 

improved accuracy of VCDR and VDD measurements and the larger number of images 

graded, the optic nerve head assessment would increase the power for genetic discovery. 

 

Table 1. Characteristics of retinal fundus images from the UK Biobank and Canadian 
Longitudinal Study on Aging participants. 

Variable UKB CLSA 

Number of images 175,770 106,330 

Number of participants 85,736  29,635 

% with at least one gradable image 95% 99% 

Sex Women (%) 44,017 (54%) 14,941 (51%) 

Age at recruitment Mean (SD), years 57 ± 8 63 ± 10 

Vertical cup-disc-

ratio Unit in 0-1 0.37 ± 0.14 0.35 ± 0.15 

Vertical disc 

diameter Unit in pixel count 129.0 ± 10.5 121.4 ± 10.6 

CLSA, Canadian Longitudinal Study on Aging cohort; SD, standard deviation; UKB, UK Biobank.  

 

 

4B.2.3 Optic nerve head parameters and intraocular pressure across 
different ancestries 
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We compared AI model-derived VCDR and VDD measurements across different genetically-

defined ancestry groups. VDD was similar across 3 ancestral groups (Europeans, East 

Asians and South Asians) and larger in Africans (Figure 2B, 2E). On average, after adjusting 

for age, sex, and VDD, VCDR was markedly higher in Asians and Africans than it was in 

Europeans (similar results in UKB Figure 2A and in CLSA Figure 2D). A different ancestry-

based trend was also observed for intraocular pressure (IOP); relative to Europeans, South 

Asians had similar IOP, East Asians had lower IOP, and Africans had higher IOP (Figure 

2C,F).  

We then examined whether the systematically assessed VCDR, VDD and IOP can explain 

the observed prevalence of glaucoma seen across different ancestries in the UK and 

Canada. Figure 3 shows the glaucoma risk of Africans, East Asians and South Asians, with 

European ancestry (the most common ancestry in UKB and CLSA data sets) as the 

baseline. Consistent with previous epidemiological studies, Africans have the highest 

glaucoma risk (Figure 3 base model, correcting for only age and sex OR = 2.5 relative to the 

reference of Europeans). As seen in Figure 2, Africans have higher VCDR and higher IOP 

than Europeans and when these were corrected for, the glaucoma risk approached that of 

Europeans in both CLSA and UKB. East Asians had a similar base model risk to Europeans, 

although the contribution of IOP and VDR differs; on average their IOP is lower and their 

VCDR is larger (Figure 2), with the pattern of glaucoma risk changing as either IOP alone 

or VCDR alone were adjusted for in the regression model. Adjusting for both IOP and VCDR, 

the risk of glaucoma in East Asians was not significantly different to Europeans, suggesting 

that the higher VCDR and lower IOP in this group relative to Europeans counteract each 

other, explaining the similar glaucoma incidences between these ancestries. Interestingly, 

in South Asians, IOP is similar to Europeans, but VCDR is higher (Figure 2). This means 

that South Asian base model risk does not change when IOP is included in the model, but 

when VCDR is included the glaucoma risk decreases to become indistinguishable from the 

incidence in Europeans. In summary, by examining individuals of varying ancestry living in 

the UK and Canada, we show that relative to European ancestry, African ancestry glaucoma 

incidence is driven by both elevated VCDR and IOP, East Asian ancestry glaucoma is driven 

by elevated VCDR but ameliorated by lower IOP and finally that South Asian glaucoma is 

driven by elevated VCDR, but not by changes in IOP (relative to that in Europeans).  
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Figure 2. Optic nerve head measurements and intraocular pressure across different 
ancestry groups. Panel A shows the boxplot for VCDR values from different ancestry groups in UK 

Biobank. The box represents median value with first and third quartiles. The red diamond is the mean value of 

VCDR after accounting for age, sex, and VDD, where the mean value is annotated as text. The dark red 

diamond is the 97.5th percentile of VCDR value. The dark red error bar is the 95% confidence interval (2.5% 

to 97.5% quantiles) of the 97.5th percentile based on 1000 bootstrapped samples, which is essential for CLSA 
data, where the sample size for African, East Asian and South Asian was substantially smaller (N < 300). Panel 

B shows the boxplot for VDD values from different ancestry groups in UK Biobank. Due to the scale from 

fundus images, the VDD was rank normalized (mean = 0, SD = 1). The red diamond is the mean value of VDD 

after accounting for age and sex. Panel C shows the boxplot for IOP levels from different ancestry groups in 

the UK Biobank (truncated at 40 mm Hg, with 15 participants between 40 - 60 mm Hg). Panel D, E and F show 

the boxplots for VCDR, VDD and IOP in the CLSA cohort, respectively.  
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Figure 3. Glaucoma risk across different ancestry groups. The figure shows the risk of 

glaucoma in different ancestry groups. The horizontal line at OR = 1 is the reference for European ancestry. 

The Y-axis is the odds ratio (OR) and 95% confidence interval (CI) for three ethnic groups (African, South 

Asian, and East Asian). In each different model, different covariates were adjusted to evaluate the association 

of ethnic groups and glaucoma risk. In the base model, only sex and age were adjusted for; the other models 

also include either IOP, VCDR, or both (IOP & VCDR).  
 
 

4B.2.4 AI-based phenotypes greatly increase SNP-based heritability and 
identify more loci  
In the GWAS of VDD-adjusted VCDR, 145 and 19 statistically independent genome-wide 

significant SNPs were respectively identified in the UKB alone and CLSA alone 

(Supplementary Figure 5). The analogous numbers of SNPs for VDD were 142 and 17 for 

UKB and CLSA, respectively. We found weak evidence of genomic inflation from linkage 

disequilibrium score regression (Supplementary Table 3). From UKB, the AI-based GWAS 

of VDD-adjusted VCDR and VDD identified substantially more loci than our previous GWAS 

based on clinician gradings (76 for VDD-adjusted VCDR and 91 for VDD)35,206. Strikingly, 

the SNP-based heritability increased by ~50% for VCDR and VDD (Supplementary Figure 

6). For instance, the SNP-based heritability for VCDR was 0.22 from clinician gradings (only 

single measure), whereas the heritability increased to 0.35 from AI-based GWAS (average 

of multiple measures). The increased heritability indicated that AI-based phenotyping was 

substantially cleaner than clinician gradings, which may be a result of two aspects: 1) higher 

accuracy of AI-based gradings; 2) improved accuracy from multiple measures per individual. 

We further tested the hypothesis in UKB and CLSA using only one measure per individual 

from AI-based gradings. The SNP-based heritability from a single measure (left or right eyes 
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in the baseline or first follow-up visit) was ~0.3, which is roughly in the middle of heritability 

estimation from clinician gradings and AI-based multiple measures (Supplementary Figure 

6). These results indicate the higher accuracy of AI-based single measure per individual 

contributes to the increase of heritability estimation, and averaging of multiple measures per 

individual can further increase the heritability. Consistent with our previous study, correcting 

for VDD in VCDR GWAS also improved the relevance to glaucoma, with a higher genetic 

correlation with glaucoma in VDD-adjusted VCDR compared with unadjusted VCDR GWAS 

(genetic correlation rg = 0.502 vs 0.457 in UKB, and 0.543 vs 0.481 in CLSA). 

 

4B.2.5 Validation AI-based GWAS 
We then compared AI-based and clinician grading-based GWAS using independent 

samples from the IGGC. The concordance of SNP effect sizes of top SNPs between the AI-

based and clinician gradings was essentially one (Panel A and D in Figure 4), and nearly all 

previously published loci using clinician ratings were replicated. The estimated effect sizes 

at the top SNPs from AI-based GWAS were also highly concordant between UKB and CLSA 

(Panel B and E in Figure 4). When combining UKB and CLSA AI-based GWAS we identified 

193 and 188 loci for VDD-adjusted VCDR and VDD, respectively, again exhibiting very high 

concordance with IGGC (Panel C and F in Figure 4). The high concordance and more loci 

support the better-powered GWAS from AI-based measurements.  
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Figure 4. Validation AI-based GWAS. The figure shows the effect sizes for VDD-adjusted VCDR and 

VDD from different data sets. The vertical and horizontal error bars are the 95% confidence interval for SNP 

effect sizes. The red line is the best fit line with 95% confidence interval region in grey. 

 

 

4B.2.6 New genetic discovery of optic nerve head measures, cross-
ancestry comparison, and implications for glaucoma 
To maximize power for locus discovery, we combined UKB, CLSA and IGGC GWAS 

(European ancestry), and identified 230 and 231 independent genome-wide significant 

SNPs for VDD-adjusted VCDR and VDD, respectively (Figure 5). Of them, we found 111 

and 107 novel loci for VDD-adjusted VCDR and VDD, respectively (Supplementary Table 4 

and 5). We then compared the effect sizes of top VDD-adjusted VCDR and VDD loci across 

different ancestries (Asian and African GWAS), due to the much smaller available sample 

sizes, their confidence intervals of effect estimations were very large, however the clear 

linear trend indicated the loci identified from European ancestry also had an effect on Asian 

populations (Figure 6A, B, for VCDR and VDD the Pearson's correlation coefficient is 0.65 

[P value 3.6 × 10-27] and 0.62 [P value 9.3 × 10-23], respectively). The sample size of African 
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ancestry was much smaller than Asian ancestry (N = 2,245 versus 8,373 for VCDR) and 

showed a lower concordance (Supplementary Figure 7). The genetic correlations across the 

genome were essentially one based on the Popcorn approach for VCDR and VDD 

(Supplementary Table 6). We also compared the effect sizes of VDD-adjusted VCDR top 

loci with their effect sizes on glaucoma (Figure 6C), and found a relatively high concordance 

(Pearson's correlation coefficient 0.71, P = 4.1 × 10-37). Of the 230 VCDR (adjusted for VDD) 

loci, 205 (89%) were in the same direction, 131 were associated with glaucoma at a nominal 

significance level (P<0.05) and 68 were associated with glaucoma after Bonferroni 

correction (P< 0.05/230= 2.2 × 10-4, the nearest gene names are highlighted in Figure 6C, 

e.g. RBPMS, AFAP1, LMX1B, ABCA1, CAV1, and GAS7).  
 
 

 

Figure 5. AI enables new genetic discovery for optic nerve head measures. Manhattan 

plot panel A shows P values for VDD-adjusted VCDR from the meta-analysis of UKB, CLSA, and IGGC 

(European ancestry). Panel B shows P values for VDD from the meta-analysis of UKB, CLSA, and IGGC 
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(European ancestry). The Y-axis is in log-log scale. The red horizontal line is the genome-wide significance 

level at P = 5 × 10!". SNPs with P value less than 1 × 10-4  are not shown in Manhattan plot. Previously unknown 

loci are highlighted with red dots, with the nearest gene names in black text. Known SNPs are highlighted with 

purple dots, with the nearest gene names in purple text. 

 
 

 

Figure 6. Comparison of the effect sizes for VCDR (adjusted for VDD) and VDD lead 
SNPs versus those observed in the Asian ancestry group and in independent 
glaucoma cohorts. Panel A and B show the effect sizes for lead VCDR (adjusted for VDD) and VDD loci 

(European versus Asian population). Panel C shows the effect sizes for VCDR (adjusted for VDD) lead SNPs 

versus log odds ratio in meta-analysis of UKB and ANZRAG glaucoma GWAS. The 24 SNPs associated with 
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glaucoma after Bonferroni correction (P<0.05/227 = 2.2 × 10-4) are highlighted with red dots, with the nearest 

gene names in black text. 

 

 

4B.2.7 Gene prioritization and pathway analysis 
We performed TWAS analysis in FUSION based on the VDD-adjusted VCDR and VDD 

GWAS summary statistics and retinal gene expression data. For VDD-adjusted VCDR we 

identified 101 genes that were significant after Bonferroni correction for multiple testing, nine 

of which were not genome-wide significant in the per-SNP analysis (Supplementary Figure 

8A and 8B). For VDD we identified 64 genes that were significant after Bonferroni correction 

for multiple testing, 13 of which were not genome-wide significant in the per-SNP analysis. 

From SMR analysis, we identified 29 and 24 genes for VDD-adjusted VCDR and VDD, 

respectively, that were significant after multiple testing. We also compared the genes 

identified from both FUSION and SMR, 11 and 8 genes overlap from the two methods for 

VDD-adjusted VCDR and VDD, respectively (Supplementary Figure 8C and 8D). For 

instance, of the 11 genes that were associated with VDD-adjusted VCDR for the two 

approaches, 6 genes also passed the HEIDI tests (P4HTM, SNX32, RASGRF, HAUS4, 

LRP11, AC012613.2), suggesting the effects on VCDR may be mediated via these gene 

expression in retina tissue. The large increase in power resulting from the use of AI grading 

to improve accuracy and enable substantially larger datasets with multiple images per 

participant meant we were able to discover many new biological pathways influencing optic 

nerve head development and aging. Our pathway enrichment analysis uncovered 65 

pathways for VCDR and 82 pathways for VDD after Bonferroni correction for multiple testing 

(Supplementary Table 7 and 8). As well as extracellular matrix pathways uncovered by our 

previous work, these new pathway analysis uncovered associations with telencephalon 

(forebrain) regionalization, embryo development, and anatomical tube development. There 

were several unexpected but statistically robust associations with kidney development (e.g. 

GO mesonephros development, Praw = 3.45 × 10!", P=0.00053 after correction for multiple 

comparisons). The genes driving the kidney development pathway enrichment included 

BMP2, BMP4, EYA1, FAT4, FOXC1, GLI3, PAX2, RARB, SIX1, and SALL1. Several kidney 

pathways were also significant in the pathway enrichment analysis applied to our VDD 

GWAS.  
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4B.3 Discussion 

Our results show the promising application of AI algorithms in genetics studies. Large scale 

biobanks such as UKB and CLSA have accumulated hundreds of thousands of optic nerve 

images containing important information for glaucomatous optic neuropathy. However, the 

time-intensive and moderate agreement of manual assessment have impeded the usage of 

retinal fundus images. We trained a deep learning model using clinically estimated VCDR 

and VDD, and found the trained model has a high accuracy. The large scale biobank data 

for both VCDR and IOP allow us to systematically compare the glaucoma risk and optic 

nerve head parameters across different ancestries. Combining genetic and image data, we 

doubled the number of loci for both VCDR and VDD, with increased heritability.  

 

The scope of available deep learning models for computer vision tasks is extensive and 

continuously developing. Various approaches to grade fundus images often utilise intricate 

data preprocessing methods296–298 as well as computationally heavy models and training 

methods292,299. In the instance of statistically powered, large scale population study, fast 

inference and quick iterations are key, making heavy computational and design costs harder 

to justify. Here we demonstrate that a relatively lightweight, pretained CNN model is capable 

of producing highly accurate estimations of VCDR and VDD as evinced by high correlation 

with clinical grading, improved genetic discovery and further validations in independent 

samples.  

 

Our AI approach has dramatically accelerated the pace of genetic discoveries. In our 

previous study, we laboriously manually assessed a subset of UKB images. With the deep 

learning model trained on clinical measurements, we were able to predict on a new subject 

within a fraction of a second, making time and effort of image labelling trivial, even when 

applied to large scale datasets (~1 hour for ~0.3 million images). Sample size is one of the 

most important limiting factors for genetic discovery. Leveraging the AI-based algorithm and 

large scale data, we were able to conduct the most powerful GWAS of optic nerve head 

parameters to date. We doubled the number of genome-wide significant loci for both VCDR 

and VDD. Interestingly, the estimated SNP-based heritability also increased by ~50% for 

VCDR and VDD (Supplementary Figure 6); the estimate for VCDR is not substantially lower 

than the heritability estimate from twin studies (~50%), although given more accurate (AI 
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based) phenotypes, the twin study based heritability estimate may increase. The increased 

heritability is a result of more accurate measurements, which arises in part due to the higher 

accuracy of AI-based predictions and in part to the AI approach allowing time-efficient 

grading of multiple measures per individual.  

 

Many of the newly identified VCDR genes are associated with other eye traits (e.g. 

glaucoma, IOP, exfoliation syndrome, myopia). For some loci associated with IOP, it is likely 

that they have an effect on VCDR as a secondary effect of the locus first acting on IOP. Loci 

including genes such as ABCA1, CAV1, AFAP1 and LMX1B were associated with VCDR 

for the first time; a likely explanation for this association is that the associated variant alters 

IOP and subsequently VCDR. Over 20 of the VCDR loci are also associated with refractive 

error, with multiple aspects of eye physiology likely involved (axial length, corneal thickness, 

retinal ganglion cell function). We also found a significant genome-wide genetic correlation 

between VCDR (adjusted for VDD) and myopia (rg = 0.3, P = 1×10-14), as well as with well 

studied traits which are associated with myopia such as years of education.300  

 

In addition, several of the new VCDR genes provide possible links to retinal ganglion cell 

biology and they may constitute possible drug repositioning candidates. There are too many 

to discuss individually but one SNP of interest is rs17855988; this missense variant in the 

elastin gene (ELN) has been associated with facial ageing. Elastin in the sclera is most 

dense around the optic nerve head301 and ELN expression has been shown to be high in 

exfoliation glaucoma lens302. A subset of the VDD loci have been found to be associated at 

genome-wide significance levels in previous glaucoma GWAS. However, in the majority of 

cases, the association with glaucoma appears to be driven by the lead SNP having a primary 

effect on VCDR (where the variance explained in VCDR for the peak SNP is larger than that 

for VDD: e.g. SNPs in or near GMDS, CAV1, MYOF, SIX6, CHEK2, TMTC2). Hence, the 

primary link between the disc parameters and glaucoma is via VCDR rather than via VDD. 

This is also shown in the lower genetic correlation between glaucoma and VDD (rg = 0.01) 

compared with glaucoma and VCDR (rg = 0.5).35,206 With the high genetic correlation 

between VCDR and glaucoma, a multitrait analysis has recently shown that including VCDR 

can improve the power to identify glaucoma genes and to enable the development of 

polygenic risk score.35 Future studies of glaucoma would benefit from incorporating these 

accurate AI derived VCDR estimates. 
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Previous studies have looked at the differences between VDD across different 

ancestries.303,304 Our results were consistent with this, with Africans having the largest disc 

size, followed by those of Asian ancestry. For VCDR, an early study (100 black and 100 

white) found that blacks had larger VCDR (mean values: blacks 0.35, white 0.24).305 A 

subsequent larger study (1534 black and 1853 white) reported larger VCDR in blacks (mean 

values: blacks 0.56, whites 0.49).306 A subsequent study in three different Asian ancestries, 

showed that VCDR values were similar between the studied ancestries (mean VCDR 0.40, 

0.42 and 0.40, in Malay, Chinese, Indian, respectively).307 It is striking that despite VCDR 

theoretically being a simple parameter to assess, the mean VCDR varies widely across 

studies, possibly due to differences in measurement protocol, sex, age and eye disease 

status. A further study93 looked at the 97.5th percentile of VCDR instead of the mean and 

reported broadly similar values in the Netherlands (0.73), Bangladesh (0.7), Mongolia (0.70), 

Singapore (0.7), Tanzania (0.7). A major advantage of our study is that we use our AI derived 

gradings in two population-based cohort studies to systematically assess VCDR differences 

across ancestries in a consistent study design. By leveraging large sample sizes, we are 

able to clearly show both Asian and African ancestry individuals have larger VCDR values 

than Europeans. Our primary results in Figure 2 correct VCDR for VDD, given previous 

studies showing that correcting for VDD enhances the relevance to glaucoma.223 

 

The raised VCDR in Asian and African ancestry individuals living in the UK and Canada is 

in keeping with elevated glaucoma rates in these ancestries.94 When combined with data on 

IOP, a combination of VCDR and IOP explains the vast majority of the variation between 

glaucoma rates in Europeans relative to Africans, South Asians and East Asians. Although 

crucially, our data show (Figure 3) that the relative contributions of VCDR and IOP are clearly 

different between all 4 major populations groups that we consider. For individuals of 

European, South Asian or African ancestry, the vast majority of broadly defined glaucoma 

cases are open angle glaucoma (OAG). In East Asia, angle closure glaucoma (ACG) is 

common and a limitation of our analysis is that we cannot distinguish between ACG and 

OAG in all cases - where available we have removed known cases of ACG in the broad 

glaucoma definition, but some ACG cases will remain.  

 

A strength of our study is that a large number of clinically assessed images were used to 

train the deep learning model for VCDR and VDD; this allowed us to generate accurate 

predictions. Our study has shown that the AI-based measurements have a high accuracy. 
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The AI-based optic nerve head assessment has also boosted the available sample size and 

dramatically expanded gene discovery for these key ocular phenotypes. We show that this 

deep learning model can also be used to assess future fundus images automatically and 

rapidly, especially in population-based studies with a large number of images. Moreover, the 

implementation of transfer-learning techniques shows that AI-aided labelling, with adequate 

sample size, has a potential to deliver equally successful genetic discoveries in other image 

based biological phenotypes. Our study has several limitations. Firstly, although our AI 

approach was able to grade a large proportion of images (particularly in the CLSA study), a 

small proportion remained ungradable due to poor picture quality. Future studies could 

explore adversarial architectures to improve clinical ratings of VCDR and VDD. However, a 

set of high quality truth labels would still be necessary for initial pre-training. Finally, although 

we were able to use genetic data to clearly identify the major ancestries within UKB and 

CLSA (European, African, South Asian, East Asian), there remained a group of 

uncategorized individuals with mixed ancestries that we did not include in our 

epidemiological or genetic analyses. 

 

To conclude, we showed that AI-based optic nerve head assessment has a high accuracy 

and this greatly improves our power to discover new genes. These findings provide new 

insights into the pathogenesis of glaucomatous optic neuropathy. We also use the 

systematic assessment of VCDR across different ancestries to help explain how the pattern 

of IOP and VCDR measures underpin observed glaucoma risk; such findings in mixed 

ancestry groups living in the UK and Canada help explain the differing characteristics of 

glaucoma across ancestries. For example, relative to Europeans, individuals with East Asian 

ancestry are more likely to have lower IOP and increased VCDR. Given these East Asians 

are genetically similar to East Asians in countries such as China and Japan, this provides 

support for the assertion that normal tension forms of glaucoma predominate in East Asia 

due to genetic predisposition for high VCDR, despite low IOP. 

 

4B.4 Methods 

4B.4.1 Study populations  
 

UK Biobank 
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The UK Biobank is a population-based cohort study with deep genetic and phenotypic data 

from ~500,000 participants aged between 40 to 69 years at the time of recruitment (2006-

2010), living in the United Kingdom.130 Retinal fundus images were available for both left 

and right eyes from two assessment visits, covering ~85,000 participants (~68,000 

participants in the baseline visit and ~19,000 participants in the first repeat assessment visit 

[2012-2013]). In our previous study, vertical cup-to-disc ratio (VCDR) and vertical disc 

diameter (VDD) were graded by two clinicians using a custom Java program.35 Detailed 

image processing and quality control methods were described previously.35 Briefly, given 

the time-consuming nature of manual grading, we only graded the left eye images (if the left 

eye images were ungradable, the right eye images were used instead) and one visit (if the 

second visit measurements were unavailable, the first visit measurements were used 

instead) of white British ancestry participants. A total of 67,040 participants with both VCDR 

and VDD measurements were included in our previous GWAS. In this study, we used a CNN 

model to grade left and right eye images from two visits for all participants, irrespective of 

ancestry, with a total of 175,770 images.  

In the UKB, ~488,000 participants were genotyped for 805,426 variants on Axiom arrays 

(Affymetrix Santa Clara, USA). The genetic data, quality control procedures and imputation 

methods have been described previously.130 Briefly, ~96 million variants were imputed using 

Haplotype Reference Consortium (HRC) and UK10K haplotype resources270,271,308, and 

487,409 individuals passed genotyping quality control. Of them, 438,870 individuals were 

genetically similar to those of white-British ancestry.126,130 For the GWAS in UKB, we 

retained SNPs with MAF > 0.01 and imputation quality score > 0.8. To verify self-reported 

diverse ancestry information (data field 21000 in UKB), we used a K-means clustering 

method based on genetic principal components (PCs). The genetic clusters were compared 

with self-reported ancestry. Participants within the same self-reported ancestry groups were 

largely in the same genetic clusters (e.g. African [N=9791], South Asian [N=2594], and East 

Asian [N=9941], detailed in Supplementary Figure 1), and on average ~20% of them have 

fundus retinal images.  

 

The Canadian Longitudinal Study on Aging 

The Canadian Longitudinal Study on Aging (CLSA) is a national, longitudinal cohort study 

of 51,338 participants from 10 Canadian provinces, aged 45 to 85 years at enrollment.309,310 

Recruitment and baseline data collection were completed in 2015, with participants followed-

up every 3 years, and an initial follow-up visit completed in 2018. In this study the nerve 
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head photographs are available for a subset cohort “Comprehensive cohort” of 30,097 

participants (for both left and right eyes, and the baseline and first follow-up visit). Retinal 

fundus imaging was performed using a Topcon (TRC-NW8) non-mydriatic retinal camera, 

with images saved in jpg format. A random sample of 1000 images was graded by a clinician 

for both VCDR and VDD using a custom Java program. The latest genome-wide genotype 

data (August 2019 release) are available for 19,669 participants of the Comprehensive 

cohort, comprising 794,409 genetic variants genotyped on the Affymetrix Axiom array, and 

~40 million genetic variants imputed using the Haplotype Reference Consortium.270 Variant- 

and sample- based quality control procedures were consistent with standards of the UK 

Biobank130 with detailed steps presented in the CLSA support document (available at 

https://www.clsa-elcv.ca/researchers/data-support-documentation). For the GWAS 

analysis, we included 18,304 participants of European ancestry based on the K-means 

cluster method on genetic principal components, and the largest cluster also contains the 

majority of individuals that self-report European ancestry. SNPs with MAF > 0.01 and 

imputation quality score > 0.8 were retained in association analysis. From the K-means 

clustering method, the sample size for African South Asian, and East Asian is 135, 219, and 

217, respectively (PC plot was shown in Supplementary Figure 2).  

 

The International Glaucoma Genetic Consortium 

The International Glaucoma Genetic Consortium (IGGC) is one of the largest international 

consortia established to identify glaucoma genetic risk variants through large-scale meta-

analysis. The phenotype and genotype data of VCDR and optic disc area for IGGC have 

been previously described elsewhere.133,311 It should be noted the optic disc area is not in 

the same scale as VDD from the AI gradings. When comparing and meta-analyzing the VDD 

and disc area data, we applied a rank-based inverse normal transformation to AI gradings 

and rendered them back to disc area scale, as detailed in our previous study.206 Publicly 

available summary statistics were downloaded for individuals of European descent (NVCDR= 

25,180, Ndisc= 24,509, from the latest HRC imputation), as well as Asian descent (NVCDR= 

8,373, Ndisc= 7,307).133,311  

 

Glaucoma GWAS dataset  
The glaucoma datasets were described in our previous study, including 34,179 primary 

open-angle glaucoma cases and 349,321 controls from a large-scale multi-ethnic meta-
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analysis (Gharahkhani, et al. 2020, in press)312. The detailed information of phenotype 

definition and genetic association analyses were presented in detail previously.312 The 

GWAS summary statistics were used to look up each of the VCDR loci (adjusted for VDD), 

and replicate their effects on glaucoma.   

 

4B.4.2 AI algorithm on retinal images 
Three separate CNN models were used to make inferences about image gradability, VCDR, 

and VDD values of retinal fundus images in UKB. The image gradability (gradable or 

ungradable) was defined as a binary classification, while the latter two tasks were modelled 

as regression problems. Images with a higher likelihood of gradability (i.e. designated 

softmax probability more than 0.5) were assigned as gradable. While a variety of CNN model 

architectures were tested, the final architecture used for all CNN models was ResNet-34.313 

Pre-trained weights, initially trained on ImageNet314 classification tasks, were utilised for 

each model as a form of transfer learning. Untrained layers specific to each model were 

additionally added, forming a custom regression (Relu) and classification (softmax) heads 

for each respective task. All fundus images were cropped and scaled to a pixel ratio of (1080, 

800) before training or validation. We used the highest native resolution for the UKB training 

images as we found that using lower resolution negatively impacted inference metrics. The 

total dataset sizes used for the VCDR, VDD and gradability tasks were 71,950, 50,984, and 

75,718, respectively. Each dataset was randomly split into 80% training and 20% validation. 

The model performance was validated by sample hold out, with final testing performed on 

images from the CLSA dataset. Model requirements for regression tasks were defined 

achieving a validation loss equal or lower than human inter-rater loss. The gradebillity task 

criteria was defined as accuracy above 95%. Both regression tasks utilised mean square 

error loss function, while the classification model optimised over the binary cross entropy 

loss function. Training of all models was completed using the FastAI framework315, while 

utilising the in-built data augmentations functionality to improve accuracy and 

generalisability. The specifics of which augmentations were used can be found in 

Supplementary Table 1. It should be noted that the regression task for VDD was dependent 

on image scale, as such, augmentations which introduced scaling were omitted. Training 

was carried out in two stages: the first involved freezing the pretrained weights and only 

training the task head; the second, the ‘fine tuning’ stage, all model weights were unfrozen. 



 

 
122 

Each stage was trained with cyclical training rate as described elsewhere316, and performed 

until the validation loss reached a plateau. 
 

4B.4.3 Optic nerve head parameters, intraocular pressure and glaucoma 
risk across different ancestries 
Previous studies have reported differences in VCDR and VDD values across different 

ancestry groups.303,304  Taking advantage of the diverse ancestries available in UKB and 

CLSA, we compared our AI derived VCDR and VDD values, as well as intraocular pressure 

(IOP, corneal-compensated126) values across different ancestry groups. We used the K-

means clustering method to define ancestry groups based on genetic data (detailed above). 

Boxplots were used to show the differences of optic nerve head measurements across 

different ancestry groups (e.g. median value, upper and lower quartiles). The mean values 

of VCDR across different ancestries were estimated after adjusting for age, sex, and VDD. 

The 97.5th percentile of optic nerve head measurements and its 95% confidence interval 

(2.5% to 97.5% quantiles) were also calculated based on 1,000 bootstrapped samples, on 

account of the substantially smaller sample size for individuals of African, East Asian and 

South Asian ancestry. We then investigated how VCDR and IOP relate to glaucoma risk in 

different ancestries. The definition of glaucoma cases and controls was detailed in our 

previous study.35 Briefly, in UKB glaucoma cases were ascertained from International 

Classification of Diseases diagnosis, record-linkage data from general practitioners, and 

self-reported previous diagnosis. In the CLSA, participants were interviewed in-person with 

the question “Has a doctor ever told you that you have glaucoma?”. Logistic regression 

models were used to evaluate the association between genetically-defined ancestry groups 

and glaucoma risk. In each different model, different covariates were adjusted to evaluate 

the association of ethnic groups and glaucoma risk. In the base model, only sex and age 

were adjusted for; the other models also include either IOP, VCDR, or both (IOP & VCDR).  

 

4B.4.4 Genome-wide association analysis and meta-analysis 
For both UKB and CLSA, the VCDR and VDD GWAS association tests were carried out 

using a linear mixed model (using BOLT-LMM version 2.3)210 to account for cryptic 

relatedness and population stratification, adjusting for sex and age. The first ten principal 

components were also included in the model to speed up the convergence of 

computations.317 The average values of measurements from left and right eyes and multiple 
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visits (if available) were used, and were first transformed using a rank-based inverse-normal 

method before association tests.267 To account for optic disc size covariation, VCDR grading 

was adjusted for VDD in GWAS analyses.205,206 The VDD-adjusted VCDR and VDD GWAS 

results from UKB and CLSA were then meta-analysed with those from the IGGC based on 

the inverse variance-weighted method (METAL software 2011-03-25 release).211 We also 

conducted association tests for VCDR and VDD in African and South Asian populations in 

UKB. Due to the relatively small size of each of these populations (Supplementary Table 2, 

less than the recommended sample size of 5000 in BOLT-LMM), PLINK was used instead, 

after removing related individuals.182 

SNP-based heritability was calculated by LD score regression (LDSC) from GWAS summary 

statistics.73,318 Bivariate LD score regression was used to estimate the genetic correlation 

between pairs of traits in European ancestry.73 We selected independent SNPs based on 

the PLINK clumping method with P value < 5×10-8, r2 < 0.01, and a window of 1Mb from the 

index variant.182 To define novel loci from the AI-based GWAS, we checked previous UKB 

VCDR and VDD GWAS based on clinician gradings35,206, we also looked up the proxy SNPs 

(r2 > 0.8) of top loci and their nearest genes in GWAS Catalog.9 

 

4B.4.5 Cross population genetic effects on optic nerve head parameters 
We evaluated the effects of genetics variants on VCDR and VDD cross different populations 

based on the following methods: 1) we first compared and replicated the AI-based top loci 

from European ancestry with the GWAS from African and South Asian samples. The effect 

sizes and standard errors of top loci were shown in a scatter plot for different ancestries; 2) 

we calculated the trans-ethnic genetic effect correlation for VCDR and VDD using the 

“Popcorn” package.319 Specifically, the GWAS summary statistics for VCDR and VDD from 

European ancestry were compared with that in Asian and African ancestry.   

 

4B.4.6 Transcriptome-wide association study and pathway analysis 
To prioritize potential causal genes, transcriptome-wide association study analysis (TWAS) 

was performed in FUSION using GWAS summary statistics and retina gene expression 

data.320 In FUSION, a reference data with both gene expression and genetic variants (SNPs) 

were used to train predictive models, which were used to impute the expression-trait 

association directly from large-scale GWAS summary statistics.320 The weights of retina 

gene expression were obtained from 406 individuals from Eye Genotype Expression 
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database (EyeGEx).170,320 We also used the EyeGEx to perform a summary data-based 

Mendelian randomization (SMR) to investigate the association of gene expression levels 

(exposure) and phenotype (outcome).243 The heterogeneity in dependent instruments 

(HEIDI) tests were used to evaluate the null hypothesis that a single causal variant affecting 

both gene expression and outcome, and the significance threshold was set at 0.05 (PHEIDI!M!

CACN! -/(! &#P#+(! (*#! -@??! *01/(*#'%'OA243 Pathway analysis were conducted in MAGMA as 

implemented in FUMA (version 1.3.6).213,214 All other analyses were performed with R 

software.216   
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Chapter 5. Genome-wide meta-analysis identifies novel loci associated 
with age-related macular degeneration 

Age-related macular degeneration (AMD) is the leading cause of central vision loss among 

the elderly population in the Western world. To accelerate the understanding of the genetics 

of AMD, we conducted a meta-analysis of genome-wide association studies (GWAS) 

combining data from the International AMD Genomics Consortium AMD-2016 GWAS 

(16,144 advanced AMD cases and 17,832 controls), AMD-2013 GWAS (17,181 cases and 

60,074 controls), and new data on 4017 AMD cases and 14,984 controls from Genetic 

Epidemiology Research on Aging study. We identified 12 novel AMD loci near or within 

C4BPA—CD55, ZNF385B, ZBTB38, NFKB1, LINC00461, ADAM19, CPN1, ACSL5, CSK, 

RLBP1, CLUL1, and LBP. We then replicated the associations of the novel loci in 

independent cohorts, UK Biobank (5860 cases and 126,726 controls) and FinnGen (1266 

cases and 47,560 control). In general, the concordance in effect sizes was very high 

(correlation in effect size estimates 0.89), 11 of 12 novel loci were in the expected direction, 

5 were associated with AMD at a nominal significance level, and rs3825991 (near gene 

RLBP1) after Bonferroni correction. We identified an additional 21 novel genes using a gene-

based test. Most of the novel genes are expressed in retinal tissue and could be involved in 

the pathogenesis of AMD (i.e., complement, inflammation, and lipid pathways). These 

findings enhance our understanding of the genetic architecture of AMD and shed light on 

the biological process underlying AMD pathogenesis. 
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5.1 Introduction 

Age-related macular degeneration (AMD), a degenerative disorder of the central retina, is 

the leading cause of central vision loss in the elderly population in the Western world.134,321–

323 AMD is classified as non-neovascular (dry AMD) and neovascular (wet) AMD. For the 

population aged over 45 years, the global prevalence of AMD is 8.69%, with a higher 

prevalence in Europeans (12.3%).134 It is estimated that the number of AMD patients is 196 

million in 2020, rising to 288 million in 2040.134  

 

AMD is highly heritable with heritability estimates between 46% and 71%.324 A recent 

genome-wide association study (GWAS) from the International AMD Genomics Consortium 

(IAMDGC) has identified 52 independent variants across 34 loci.166 Understanding the 

genetic contributions for AMD is important to reveal insights into the biological mechanisms 

of AMD, and discover potential genetic variations for clinical diagnostic, predictive, and 

therapeutic targets.138,166  

 

Recent statistical methodology and application studies have shown that multivariate GWAS 

can leverage multiple input summary statistics of the same trait or genetically correlated 

traits, and gain the power for identifying new genes.53,325 Compared with the traditional meta-

analysis that assumes the input GWAS summary statistics are from the same trait (a genetic 

correlation close to one) and is sensitive to sample overlap,211 the multiple trait analysis of 

GWAS (MTAG) approach, a framework to generalize the standard inverse-variance meta-

analysis method, can jointly analyse GWAS summary statistics from the same trait or 

multiple correlated phenotypes, with or without overlapping samples.53 In this study, we 

identify novel AMD loci using the state-of-the-art multivariate GWAS method to combine 

several large AMD GWAS datasets. 

 

5.2 Methods 

5.2.1 Study overview 
Our study design is displayed in Figure 1. We conducted a meta-analysis of GWASs based 

on the MTAG approach,53 which generalizes the standard inverse-variance meta-analysis 

method to jointly analyse GWAS summary statistics with overlapping samples. We applied 
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MTAG to three input summary statistics: AMD-2016 GWAS166 and AMD-2013 GWAS165 

from the IAMDGC, and AMD GWAS in Genetic Epidemiology Research on Aging (GERA) 

study.326 We then replicated the novel AMD loci in independent datasets from the UKB and 

FinnGen Studies.  

 

 

 
Figure 1. Study Design.  
The multivariate analysis of GWAS (MTAG), a method to jointly analyze summary statistics, was 

applied to three input summary statistics of AMD GWAS: AMD-2016 GWAS166 and AMD-2013 

GWAS165 from the International AMD Genomics Consortium (IAMDGC), and AMD GWAS in Genetic 

Epidemiology Research on Aging (GERA) study. The novel loci were then replicated in the UK 

Biobank and FinnGen studies.   

 

 

5.2.2 International Age-Related Macular Degeneration Genomics 
Consortium 
GWAS summary statistics: AMD-2016 GWAS and AMD-2013 GWAS 
We downloaded two publicly available AMD summary statistics from the IAMDGC: AMD-

2016 GWAS and AMD-2013 GWAS (web resources in the supplement).165,166 In the AMD-

2016 GWAS, there are 16,144 cases and 17,832 controls of European descent with P values 

and directions available in the summary statistics. We used the same method as mentioned 

in Burgess and colleagues’ study to derive the beta-coefficients and standard errors (SEs) 

for all SNPs.147 Briefly, the P values and directions of associations from the summary 

statistics were used to calculate z-scores. With the assumption that SE multiplied by 

sqrt(MAF × (1-MAF)) should be a constant, where “MAF” is the minor allele frequency, we 

estimated the constant using the average estimations from 34 genome-wide significant 

variants from Fritsche and colleagues’ study.147,166 The constant was further used to 
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calculate SEs and beta-coefficients for other variants. The validity of the method was also 

fully assessed in Burgess and colleagues’ study.147  

For the AMD-2013 GWAS, the GWAS summary statistics from 17,181 AMD cases and 

60,074 controls were used. We used the same method above to calculate the beta-

coefficients and SEs for all variants. 

 

5.2.3 Genetic Epidemiology Research on Aging (GERA) study 
The Genetic Epidemiology Research on Aging (GERA) cohort is a substudy of the 

longitudinal cohort enrolled in the Kaiser Permanente Research Program on Genes, 

Environment, and Health (RPGEH). The detailed description of the study design can be 

found in the database of Genotypes and Phenotypes (dbGaP, study accession: 

phs000674.v1.p1).326,327 In our authorized access data, 78,486 participants have both 

phenotype and genotype data. We only included self-reported whites for the following 

analysis.  

We performed genotype quality control using PLINK software (version 1.90 beta).182 For 

samples, we removed individuals with >3% missing genotypes. For markers, SNPs with call 

rate <95%, MAF <0.01, and Hardy-Weinberg equilibrium (HWE) P <1×10-6 were discarded. 

For relatives, we calculated identity by descent using autosomal SNPs and only kept one of 

any pair of individuals with pi-hat >0.2 for analysis. Michigan Imputation Server was used 

for imputation (parameters: HRC reference panel, version r1.1 2016; phasing, ShapeIT; 

population, EUR).328 SNPs with imputation quality score >0.3 and MAF >0.01 were retained 

for association analysis.  

Macular degeneration cases were recorded in the electronic health record (EHR) system as 

International Classification of Diseases, Ninth Revision (ICD-9) diagnosis codes (362.5, 

362.50, 362.51, 362.52, and 362.57). Finally, we reported GWAS on 4,017 macular 

degeneration cases and 14,984 controls from the GERA cohort.  

 

5.2.4 Replication in UK Biobank and FinnGen Study datasets 
The UK Biobank project is a large-scale prospective cohort study of half a million participants 

across the United Kingdom, aged between 40 and 69 at the time of recruitment (2006-

2010).329 In our analysis, we only included participants with written consent and of white-

British ancestry based on self-reported ethnicity and genetic principal components.126,329 To 

control relatedness between samples, we used a pruning method in PLINK software (version 
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1.90 beta) to keep one of any pair of individuals with pi-hat >0.2. We identified 5,860 AMD 

cases using the following criteria: 1) ICD-9 or ICD-10 diagnosis codes (3625 and H353); 2) 

responded “Macular degeneration” in “eye problems/disorders” (Field 6148); 3) responded 

“macular degeneration” in self-reported non-cancer illness (Field 20002). We selected 

126,726 “healthy” controls who did not have serious eye diseases (Field 6148). The UKB 

genotype data and quality control procedures were described previously.329 In our 

association analysis, we only included SNPs with MAF >0.01 and imputation quality 

score >0.3. 

The FinnGen study (https://www.finngen.fi/en) is a nation-wide study launched in Finland in 

2017. The FinnGen study combines both genetic information and health care data to 

improve personalised healthcare. We downloaded the available summary statistics from the 

public release of FinnGen data freeze 2 results for 1,266 AMD cases (wet or dry macular 

degeneration) and 47,560 controls.  The UKB and FinnGen AMD results were meta-

analysed as the replication sample.  

 

5.2.5 The Blue Mountains Eye Study 
The Blue Mountains Eye Study (BMES) is a population-based cohort study investigating the 

etiology of common ocular diseases among suburban residents aged 49 years or older, in 

Australia.323 The full description of the study design, phenotype definition, and genetic data 

were described previously.166,323,330,331 In brief, retinal photographs were assessed for AMD 

lesions following the Wisconsin Age-Related Maculopathy Grading System for late AMD 

cases.332 The late AMD cases were defined as presence of neovascular AMD or pure 

geographic atrophy. The controls were defined as no soft (distinct or indistinct) or 

intermediate drusen, any retinal pigment abnormalities (either depigmentation or increased 

pigment), and no signs of early or late AMD. DNA samples were obtained during the 5-year 

follow-up and ancillary surveys, which were performed between 1997 and 2000. Participants 

were genotyped with Human610-Quad arrays (Illumina, San Diego, CA, USA). Genotype 

data were imputed in Michigan Imputation Server. We included 100 late AMD cases and 

2,136 controls of European descent with genetic information in our analysis.  

 

5.2.6 Statistical analysis 
For both of GERA and UKB AMD GWASs, we conducted logistic regression models under 

an additive genetic model adjusting for sex, age, and the first ten genetic principal 
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components in PLINK software (version 2.0).182 Bivariate LD score regression was used to 

estimate the genetic correlation between pairs of AMD datasets.73 We then used the MTAG 

software (version 1.0.8) to meta-analyse the GWAS summary statistics from AMD-2016 

GWAS, AMD-2013 GWAS, and AMD GWAS in GERA study (Figure 1).53 The default quality 

control procedures in MTAG were used to filter SNPs with MAF > 0.01. We then used a 

stepwise model selection procedure in the GCTA-COJO software (1.91.7beta) to identify 

lead independent genome-wide significant SNPs (both conditional and unconditional P value 

< 5×10-8).126,212 The lead SNPs were looked up in the Eye Genotype Expression (EyeGEx) 

database of retinal tissue to identify retina specific expression quantitative trait loci (eQTL) 

and expression-trait associations from transcriptome-wide association study (TWAS) 

summary results.170 We applied SMR and HEIDI tests based on AMD meta-analysis 

summary statistics and the EyeGEx eQTL data.243 We conducted gene-based and pathway 

analysis in MAGMA (v1.06) as implemented in FUMA platform (version 1.3.4).213,214  

To derive a PRS, we selected the lead independent genome-wide significant SNPs, and the 

PRS was weighted based on the estimated AMD odds ratios (OR) from the MTAG analysis. 

The “pROC” package was used to calculate the area under the curve (AUC).215 All general 

analyses were performed with R (version 3.4.1).216  

 

5.3 Results 

5.3.1 Meta-analysis of AMD GWAS identifies 12 novel loci 
We conducted a meta-analysis based on MTAG method to combine three AMD GWAS 

summary statistics: AMD-2016 GWAS and AMD-2013 GWAS from the International AMD 

Genomics Consortium (IAMDGC), and AMD GWAS in the Genetic Epidemiology Research 

on Aging (GERA) cohort (Figure 1). The genetic correlations between the AMD input 

datasets were very high based on LD score regression method (Supplementary Table S1). 

We then investigated the MTAG output summary statistics, and found no evidence of 

genomic inflation (lambda genomic control 1.18, LD score regression intercept 1.03, 

Supplementary Figure S1). There is also no evidence of inflation due to violation of the 

homogeneity assumption in MTAG (max False Discovery Rate 0.0016). From the MTAG 

GWAS output, we identified 69 lead independent genome-wide significant SNPs (12 of them 

are novel loci, Figure 2, Supplementary Figure S2, and Supplementary Table S2).  

 



 

 
134 

 

 

Figure 2. Manhattan plot of the meta-analysis of genome-wide association studies for 
AMD.  
Novel loci are highlighted in red dots, with the nearest gene names in black text. The red line is the 

genome-wide significance level at 5×10-8. 

 

 

We then replicated the 12 novel AMD loci in the UKB and FinnGen AMD studies. The 

concordance of SNP effect sizes between the MTAG discovery cohorts and replication 

datasets (UKB and FinnGen) was high (Pearson’s correlation coefficient 0.89, P value 

1.2×10-24, Figure 3). Of the 12 novel loci, 11 were in the expected direction (binomial test P 

value = 6.3×10-3), five were associated with AMD at a nominal significance level (P value < 

0.05), and one (rs3825991 in gene RLBP1, P value = 1.6×10-3) after Bonferroni correction 

(Table 1). We also built a polygenic risk score using the 12 novel SNPs, and the score was 

strongly associated with AMD status in UKB (P = 2.4 ×10-4). 
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Figure 3. Comparison of the effect sizes for 69 genome-wide significant independent 
SNPs identified from meta-analysis of AMD GWASs versus those in UK Biobank and 
FinnGen AMD GWAS. 
Pearson’s correlation coefficient is 0.89 (P value=1.2×10-24). The red line is the best fit line, with the 

95% confidence interval region in grey. Novel AMD SNPs are highlighted in red and known SNPs in 

purple. 
 

Most of the novel genes are expressed in retinal tissue and could be involved in the 

pathogenesis of AMD (Box 1). For instance, C4BPA - CD55 loci is involved in the regulation 

of complement activation,333,334 and NFKB1 and LBP are important factors for inflammatory 

response pathways.335,336 LINC00461 was identified as the most significant loci associated 

with macular thickness.265 RLBP1 is associated with multiple Mendelian retinal 

dystrophy,337,338 and also one of the strongest AMD-associated candidate genes from a 

recent transcriptome-wide association analysis.339 These findings are important for our 

understanding of the pathogenesis of AMD development, and could potentially constitute 

therapeutic targets for AMD.340  
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Table 1. List of 12 novel AMD loci from the meta-analysis of genome-wide 

association studies. 

SNP CHR BP 

Nearest 
Gene EA NEA FREQ P (2016) 

P 
(2013) 

P 
(GERA) 

BETA 
(MTAG) 

P 
(MTAG) 

P  
(replica
tion)1 

P 
(eQTL)2 

P  
(TWAS)

3 

rs11120691 1 207486475 

C4BPA - 

CD55 G T 0.44 2.3×10-5 8.2×10-5 0.1 -0.08 1.2×10-8 0.02 0.006 0.47 

rs259842 2 180738840 ZNF385B C T 0.62 5.6×10-6 2.4×10-3 0.01 -0.08 1.1×10-8 0.04 0.10 0.43 

rs2011092 3 141124607 ZBTB38 C T 0.35 4.4×10-6 4.6×10-4 0.22 0.09 1.4×10-8 0.27 6.2×10-15 9.4×10-5 

rs1005819 4 103504305 NFKB1 T C 0.42 8.6×10-6 4.0×10-4 0.23 -0.08 2.4×10-8 0.49 0.007 0.08 

rs17421410 5 87836307 LINC00461 G A 0.07 9.8×10-7 3.4×10-3 0.29 0.15 2.0×10-8 0.08 0.004 0.48 

rs6899205 5 156943285 ADAM19 A G 0.28 5.8×10-7 1.2×10-6 0.98 -0.10 2.0×10-10 0.13 6.7×10-4 0.04 

rs7896471 10 101788308 CPN1 T G 0.04 1.5×10-7 0.01 0.57 -0.20 1.9×10-8 0.07 0.02 0.004 

rs1926564 10 114139896 ACSL5 A G 0.90 3.4×10-7 5.1×10-4 0.79 -0.13 4.9×10-9 0.39 0.007 0.39 

rs1378940 15 75083494 CSK A C 0.68 3.5×10-6 1.8×10-4 0.36 0.09 8.3×10-9 9.6×10-3 1.6×10-9 0.25 

rs3825991 15 89761664 RLBP1 A C 0.48 1.9×10-7 3.7×10-3 0.26 0.08 4.3×10-9 1.6×10-3 1.7×10-20 1.0×10-6 

rs9973159 18 597950 CLUL1 T C 0.15 9.4×10-8 4.3×10-6 0.04 -0.14 2.9×10-12 0.22 5.9×10-18 0.001 

rs2232613 20 36997655 LBP T C 0.08 4.3×10-7 0.06 0.03 -0.14 3.0×10-8 7.0×10-3 - 0.06 

Abbreviations: BETA, beta coefficient; CHR, Chromosome; EA, effect allele; eQTL, expression quantitative trait loci; FREQ, 

allele frequency of effect allele; MTAG, multiple trait analysis of GWAS; NEA, non-effect allele;  P, P values; SNP,  single 
nucleotide polymorphism; TWAS, transcriptome-wide association analysis.  

UKB, UK biobank data; 2016, AMD-2016 GWAS; 2013, AMD-2013 GWAS; GERA, Genetic Epidemiology Research on 

Aging study. 

Chromosomal position is based on the NCBI RefSeq hg19 human genome reference assembly. 
1 Novel genes passing multiple testing correction (P<0.05/12) in replication datasets (meta-analysis of UK biobank and 

FinnGen study) are highlighted in bold font. 
2  eQTL passing gene-level multiple testing correction are highlighted in bold font. 
3 TWAS P values look up from Ratnapriya et al 2019.  For loci rs7896471 and rs2232613 are based on genes DNMBP 

and KIAA1755, respectively.  
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Box 1. Biology annotations of 12 novel AMD loci. 

Nearest 
Genes 

Gene function 

C4BPA - 
CD55 

Complement Component 4 Binding Protein Alpha (C4BPA) and Decay Accelerating Factor 
For Complement (CD55) are involved in the regulation of complement activation.333,334 
Previous functional studies proposed that the expression of CD55 in retinal pigment epithelium 
cells could be a potential therapeutic target for AMD.340 CD55 was also reported to be 
associated with myopia.341 

ZNF385B 
Zinc Finger Protein 385B (ZNF385B) is highly expressed in retinal tissue.342 Patient with a 
2q31.2-32.3 deletion presented microphthalmia and retinal coloboma.343 

ZBTB38 
ZBTB38 encodes Zinc Finger And BTB Domain Containing 38, a zinc finger transcriptional 
activator that binds methylated DNA. Its function in eye is uncharacterized. 

NFKB1 

Nuclear Factor Kappa B Subunit 1 (NFKB1) is related to many biological processes such as 
inflammation, immunity, differentiation, cell growth, tumorigenesis, and apoptosis. The 
activation of NF-κB is an important pathway to the development of AMD.336,344 

LINC00461 

LINC00461 is a long non-coding RNA and expressed predominantly in the brain and visual 
cortex. It is the most significant loci associated with macular thickness.265 It is also associated 
with retinal vascular caliber,345,346 and macular telangiectasia type 2.347 

ADAM19 

Disintegrin And Metalloproteinase Domain-Containing Protein 19 (ADAM19) is a member of 
the ADAM (a disintegrin and metalloprotease domain) family. It is associated with Alzheimer’s 
disease and could play an important role in retinal degeneration diseases.348,349  

CPN1 

Carboxypeptidase N Subunit 1 (CPN1) plays a central role in regulating the biologic activity 
of peptides such as kinins and anaphylatoxins. It could be involved in choroid development,350 
and a recent Bayesian functional association study also showed CPN1 is associated with 
AMD. 

ACSL5 ACSL5 plays a key role in lipid biosynthesis and fatty acid degradation.351 

CSK 

C-Terminal Src Kinase (CSK) plays an important role in T-cell activation and the 
phosphorylation of C-terminal tyrosine residues. It is expressed in retinal vascular endothelial 
cells.352 

RLBP1 

Retinaldehyde Binding Protein 1 (RLBP1) is related to multiple Mendelian retinal 
dystrophy.337,338 A recent study showed this gene could increase AMD risk by the interaction 
effect between the nuclear and mitochondrial genome.353 A transcriptome-wide association 
study also identified this gene associated with AMD.339 

CLUL1 

CLUL1 encodes Retinal Clusterin-Like Protein. Clusterin is expressed in many eye tissues, 
such as retinal pigment epithelium, ganglion cells, and photoreceptor cells. Although 
candidate gene study found no pathogenic variants,354 a recent study showed an interaction 
effect of gene-age for AMD risk.355 

LBP 

Lipopolysaccharide Binding Protein (LBP) is involved in inflammatory response through NF-
kB and MAPK signaling. It protects human retinal pigment epithelial cells against oxidative 
stress-induced apoptosis, which contributes to the pathogenesis of AMD development.335 

 
 

5.3.2 Gene-based and pathway analysis 
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We then conducted a genome-wide gene-based association analysis and identified an 

additional 21 novel genes (defined as no genome-wide significant SNPs within the region of 

a gene, Supplementary Figure S3 and Table S3). For example, the novel gene PDGFB, 

encodes Platelet Derived Growth Factor Subunit B, which is a member of the protein family 

comprised of both platelet-derived growth factor (PDGF) and vascular endothelial growth 

factor (VEGF), could provide genetic insight into the development of VEGF and PDGF 

inhibition for neovascular AMD.356,357 Pathway analysis of 10,678 gene sets (MsigDB v6.2, 

curated gene sets: 4,761, Gene Ontology terms: 5,917) resulted in 19 significant gene sets 

after FDR correction, which include complement cascade, high density lipoprotein particle 

remodeling, cholesterol transporter activity, and negative regulation of macrophage derived 

foam cell differentiation (Supplement Table S4). 

 

5.3.3 eQTL and transcriptome-wide association analysis 
We also looked up the 69 genome-wide significant SNPs in retina from the Eye Genotype 

Expression (EyeGEx) database to identify expression quantitative trait loci (eQTL).170 We 

found 12 genome-wide significant SNPs were significant eQTL for 25 SNP-gene pairs (cis-

eQTLs) after gene-level multiple testing correction across the genome (Table 1 and 

Supplementary Table S5). Five SNP-gene cis-eQTLs were from our novel AMD SNPs: 

rs2011092 (cis-eQTL target gene ZBTB38), rs1378940 (MPI), rs3825991 (RLBP1), 

rs9973159 (CLUL1), and rs9973159 (RP11-806L2.2). Of the 12 genome-wide significant 

SNPs we identify here, one was study-wide significant in a previous transcriptome-wide 

association study (TWAS) based on earlier AMD GWAS summary statistics170 (Table 1).  

 

To test the effects of genetic variants on AMD risk that is mediated by gene expression 

levels, we also conducted summary data-based Mendelian randomization (SMR) and 

heterogeneity in dependent instruments (HEIDI) tests.243 SMR investigates the relationships 

between gene expression levels (exposure) and phenotype (outcome) using genetic 

variants as instrumental variables. We identified 19 genes after multiple testing corrections 

(PSMR< 0.05/5075 = 9.85 × 10-6, Supplementary Table S6). We further used the HEIDI 

method to test the null hypothesis that there is a single causal variant affecting both gene 

expression levels and AMD risk. We identified 12 genes that passed the HEIDI test (PHEIDI!

M!CACNOG!HLA-DQB2, PILRA, PILRB, STAG3L5P, PMS2P1, TSC22D4, BLOC1S1, B3GLCT, 

RLBP1, POLDIP2, CLUL1, and RP11-806L2.2 (based on updated EyeGEx database), 
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which are associated with AMD risk underlying the GWAS hits suggesting that these genes 

are good candidates of prioritizing for functional follow-up studies. 

 

5.3.4 Prediction value of AMD polygenic risk score 
We constructed an AMD polygenic risk score (PRS) from the 69 lead SNPs (PRS69-SNP), and 

then evaluated the prediction performance in 100 late AMD cases and 2,136 controls from 

the Blue Mountains Eye Study (BMES). The area under the curve (AUC) of the PRS69-SNP 

was 0.76 (95% confidence interval [CI]: 0.72 - 0.80). To assess the improvement of our new 

PRS compared with previous AMD PRS, we derived a PRS from previously published 52 

SNPs (PRS52-SNP) for BMES. The prediction ability of our new PRS69-SNP was better than 

that based on previously published SNPs PRS52-SNP (AUC52-SNP = 0.74, 95% CI: 0.70 - 0.79), 

although the AUC improvement was not significant (P = 0.21). 

 

5.4 Discussion 

We have conducted a large meta-analysis of GWAS for AMD and identified 69 genome-

wide significant SNPs (12 novel). We found most of the novel genes are expressed in the 

retina and could be involved in AMD pathogenesis. Through genome-wide gene-based 

association analysis, we identified an additional 21 novel genes. Pathway analysis indicated 

complement cascade, high density lipoprotein particle remodeling, cholesterol transporter 

activity, and negative regulation of macrophage derived foam cell differentiation are involved 

in the biological process underlying AMD risk.  

 

In this study, we conducted a multivariate GWAS (based on MTAG method) rather than a 

traditional inverse-variance meta-analysis. Traditional meta-analysis assumes the input 

GWAS summary statistics are derived for the same trait (a genetic correlation close to 

one).211 In practice, the heterogeneity of the case phenotype would lead to a lower genetic 

correlation (less than one) even for the same trait. Recent statistical methodology studies 

showed that multivariate GWAS can leverage multiple input summary statistics of the same 

trait with different measures or even different traits with a high genetic correlation.53,325 Our 

input files AMD-2016 GWAS and AMD-2013 GWAS are summary statistics for advanced 

AMD, and the AMD cases in GERA are identified using electronic health records, which 

could include both of advanced and early or intermediate AMD cases. The MTAG approach 
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is able to handle this issue by leveraging the high genetic correlation between the input 

summary statistics and maximizing the statistical power to detect genetic associations for 

advanced AMD (our index input AMD-2016 GWAS, which has the highest power). More 

importantly, the MTAG approach can handle sample overlap between the input GWAS 

summary statistics.53 In our multivariate GWAS, there is some sample overlap between the 

AMD-2016 GWAS and the AMD-2013 GWAS. In this scenario, MTAG framework is an ideal 

method for taking full advantage of the large public available GWAS summary statistics.  

 

The gene discovery from our MTAG GWAS will contribute towards the understanding of the 

biology mechanisms and the etiology of AMD. As we presented in Box 1, most of the novel 

loci are potentially involved in the biological process of AMD. For instance, macular 

thickness is an important quantitative trait for AMD.358 A recent first macular thickness 

GWAS identified 139 loci, and some of them are known AMD genes, such as RDH5, 

NPLOC4, RAD51B, and SLC16A8.265 Our meta-analysis of GWASs identified a novel AMD 

loci LINC00461, which is the most significant signal from the macular thickness GWAS.265 

LINC00461 is a long non-coding RNA and expressed predominantly in the brain and visual 

cortex.359 Previous GWAS also indicated LINC00461 is associated with retinal vascular 

caliber,345,346 a risk factor of AMD, and macular telangiectasia type 2,347 a rare neurovascular 

degenerative retinal disease. Our meta-analysis of GWASs also identified novel genes 

involved in the regulation of complement activation,333,334 lipid biosynthesis,351 inflammatory 

response,335,336 and Mendelian retinal diseases.337,338 All together, these gene findings help 

us have a better understanding of the pathogenesis of AMD. 

 

In this study, we conducted a meta-analysis of GWASs for individuals of European ancestry, 

hence the generalizability of the novel AMD genes to other populations still needs further 

replication. Besides, our replication dataset of UKB has a relatively small sample size and 

young participants (40-69 years old), and the AMD cases were identified using both hospital 

health records and self-reported cases. Although the concordance of SNP effect sizes 

between the MTAG discovery cohorts and replication cohorts was high and most of them 

were in the expected direction, replication datasets with larger sample size of clinical 

diagnosis cases would improve the power to replicate our novel genes. Moreover, although 

we looked up the eQTL and TWAS results in retinal tissue and further literature search 

indicated most of these genes are probably involved in the pathogenesis of AMD, additional 

functional studies are warranted to investigate the underlying biological mechanisms of the 
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novel genes. Finally, using BMES samples we evaluated the prediction value of a PRS 

based on i) 69 lead SNPs identified here and ii) 52 previously published SNPs. Both PRSs 

were derived using the AMD consortium data which included a subset of the BMES samples 

used here to test the PRS and in theory this could induce slight over-fitting due to sample 

overlap. In practice this would have a negligible effect on our results because i) the sample 

overlap is very small (~0.5% of cases) and ii) we only used a small number of SNPs in our 

PRS. Although our new PRS improved the prediction AUC (from 0.74 previously, to 0.76 

here), the increase was not statistically significant, possibly due to the limited number of 

advanced AMD cases in BMES or the small effect sizes of the additional GWAS signals. We 

performed an exploratory analysis using the PRS in the UKB cohort although the AUC 

values were substantially lower (data not shown), reflecting the fact that due to their relatively 

young age, most UKB cases did not have advanced AMD. 

 

In conclusion, we conducted a meta-analysis GWAS for AMD and identified 12 novel loci. 

Most of the novel genes are expressed in retinal tissue and could be involved in the 

pathogenesis development of AMD. These findings enhance our understanding of the 

disease mechanisms of AMD.  
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Chapter 6A. Using Mendelian randomization to evaluate the causal 
relationship between serum C-reactive protein levels and age-related 
macular degeneration 

 

Serum C-reactive protein (CRP), an important inflammatory marker, has been associated 

with age-related macular degeneration (AMD) in observational studies; however, the 

findings are inconsistent. It remains unclear whether the association between circulating 

CRP levels and AMD is causal. We used two-sample Mendelian randomization (MR) to 

evaluate the potential causal relationship between serum CRP levels and AMD risk. We 

derived genetic instruments for serum CRP levels in 418,642 participants of European 

ancestry from UK Biobank, and then conducted a genome-wide association study for 12,711 

advanced AMD cases and 14,590 controls of European descent from the International AMD 

Genomics Consortium (IAMDGC). Genetic variants which predicted elevated serum CRP 

levels were associated with advanced AMD (odds ratio [OR] for per standard deviation [SD] 

increase in serum CRP levels: 1.31, 95% confidence interval [CI]: 1.19 to 1.44, P = 5.2 × 10-

8). The OR for the increase in advanced AMD risk when moving from low (<3 mg/L) to high 

(>3 mg/L) CRP levels is 1.29 (95% CI: 1.17 - 1.41). Our results were unchanged in sensitivity 

analyses using MR models which make different modelling assumptions. Our findings were 

broadly similar across the different forms of AMD (intermediate AMD, choroidal 

neovascularization, and geographic atrophy). We used multivariable MR to adjust for the 

effects of other potential AMD risk factors including smoking, body mass index, blood 

pressure and cholesterol; this did not alter our findings. Our study provides strong genetic 

evidence that higher circulating CRP levels lead to increases in risk for all forms of AMD. 

These findings highlight the potential utility for using circulating CRP as a biomarker in future 

trials aimed at modulating AMD risk via systemic therapies.  
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6A.1 Introduction 

Age-related macular degeneration (AMD) is the leading cause of irreversible central vision 

loss among the elderly population in the Western world.134,138,321–323 The etiology of AMD is 

not yet well understood; however, several hypotheses focus on the pathogenic pathways 

related to genetic predisposition, inflammation, complement, lipid, and oxidative 

stress.138,166,360,361 In support of this, genome-wide association studies (GWAS) have 

identified a variety of complement pathway related genes, such as complement factor H 

(CFH), factor I (CFI), and the complement components C2, C3, and C9.165,166 The presence 

of complement and inflammatory reactions in drusen, the hallmark lesions of AMD, suggests 

the important role of inflammation in AMD pathogenesis.  

 

C-reactive protein (CRP) is the most studied systemic marker of inflammation,362 and could 

induce proinflammatory responses and the progression of AMD.361 Drugs targeted to CRP 

that alleviate inflammatory responses have been postulated to prevent the progression of 

AMD.360,361 However, observational studies have shown mixed conclusions on the 

association between circulating CRP levels and the risk of AMD.159,363–369 Previous genetic 

studies have found no evidence of association between genetic variants in the CRP gene 

and AMD risk.370–373 However, these genetic variants at the CRP locus only account for a 

relatively small proportion of the variability of circulating CRP levels, and more robust 

instruments for quantifying the genetic contribution to circulating CRP are needed.373 

Therefore, it remains unclear whether elevated circulating CRP levels are causally related 

to AMD risk. 

 

Mendelian randomization (MR) is an instrumental-variable based approach to investigate 

the causal relationships between risk factors and outcomes via the use of genetic 

instruments (single nucleotide polymorphisms [SNPs] being most commonly used).70,374 In 

MR analysis, as genetic instruments are distributed randomly at conception, the predicted 

circulating CRP levels are unlikely to be related to confounders of AMD risks or 

consequentially influenced by AMD disease status through reverse causality. Therefore, the 

study design of MR is akin to a natural analogue of traditional RCT where unmeasured 

confounding are randomized across both the genetically predisposed (circulating CRP-

increasing allele carriers) and unaffected group (reference; non-effect allele carriers).70 In 
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this study, we investigate the causal relationship between circulating CRP levels and AMD 

risk, which would provide therapeutic implications for the prevention and treatment of AMD. 

 

6A.2 Methods 

6A.2.1 Study design 
To investigate the causal relationship between serum CRP levels and AMD risk, we applied 

the two-sample MR framework,375 an approach to make causal inference using GWAS 

summary statistics for exposure and outcome from separate GWASs. We conducted a 

GWAS for serum CRP levels in the UK Biobank (UKB) cohort to obtain genetic instruments 

for measured circulating CRP levels. We then conducted a series of GWAS analyses for 

advanced AMD and other AMD subtypes using the individual level data from the 

International AMD Genomics Consortium (IAMDGC). To assess sample overlap between 

UKB and IAMDGC datasets, we ran LD score regression between CRP GWAS in UK 

Biobank and advanced AMD GWAS in IAMDGC dataset. The intercept of genetic 

covariance is 0.0058 (standard error 0.0104), which indicates that the intercept is 

approximately zero and there is little or no sample overlap between the two datasets.  

 

The UK Biobank study was approved by the National Research Ethics Service Committee 

North West—Haydock, all participants provided informed written consent, and all study 

procedures were performed in accordance with the World Medical Association Declaration 

of Helsinki ethical principles for medical research. In the International AMD Genomics 

Consortium, all groups collected data according to the Declaration of Helsinki principles. 

Study participants provided informed consent, and protocols were reviewed and approved 

by the local ethics committees. 

 

6A.2.2 Genetic instruments for serum C-reactive protein levels 
The UKB is a large-scale population-based cohort study of half a million people aged 

between 40-69 years living in the United Kingdom.130 The serum CRP levels were available 

for 469,881 individuals (UKB data field 30710, 

http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=30710) as part of the recent UKB release 

(2019 release) for serum biochemistry data, and were measured using immunoturbidimetric 

method (high sensitivity analysis on a Beckman Coulter AU5800). The reportable range of 
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high sensitivity serum CRP is from 0.08 mg/L to 80 mg/L (mean and standard deviation: 

2.60 ± 4.34 mg/L, Supplementary Table 1). We included 418,642 participants of white British 

ancestry in the following serum CRP GWAS analysis (Supplementary Figure 1). We 

calculated the average values of serum CRP levels for individuals that underwent two 

assessments. We applied a rank-based inverse-normal transformation to serum CRP levels.  

 

For the serum CRP GWAS in UKB, we conducted a linear mixed model under an additive 

genetic model implemented via the BOLT-LMM software (version 2.3).210 The model was 

adjusted for sex, age and the first ten principal components (PCs). We selected independent 

genome-wide significant variants as genetic instruments for serum CRP levels using the 

following criteria: 1) P value on serum CRP < 5×10-8; 2) linkage disequilibrium (LD) between 

SNPs r2 < 0.01; and 3) the SNPs being present in the AMD GWAS summary statistics 

(described below). The LD-clumping procedure was performed using PLINK (version 1.9).182  

 

In our sensitivity analyses, we used the following methods to derive the genetic instruments: 

1) in UKB, we removed 16,946 (4%) participants with circulating CRP levels > 10 mg/L (e.g. 

due to a serious infection in the participant) and adjusted for body mass index (BMI, data 

field 21001) in the association models; 2) we used previously reported circulating CRP 

variants (44 SNPs in our AMD GWAS summary statistics described below);376 3) to evaluate 

the potential pleiotropic effects of CRP genetic instruments, we also ran a series of GWASs 

for other potential AMD risk factors including smoking, BMI, systolic blood pressure (SBP), 

high-density lipoprotein cholesterol (HDL-C), and glycated haemoglobin (HbA1c) in UKB 

(Supplementary Table 1). In the causal inference of CRP levels on the risk of AMD, we 

adjusted for these risk factors by a multivariable MR analysis (see statistical analysis 

section, below). 

 

6A.2.3 Age-related macular degeneration dataset 
The International Age-related Macular Degeneration Genomics Consortium (IAMDGC) 

dataset is the largest European GWAS focusing on AMD susceptibility (16,144 advanced 

AMD cases and 17,832 controls).166 The full description of the study design, phenotype 

definition, and genetic data were described previously.166 Briefly, in IAMDGC, data were 

gathered from 26 studies with each including (a) advanced AMD cases with choroidal 

neovascularization (CNV) and/or geographic atrophy (GA) in at least one eye and age at 
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first diagnosis more than 50 years old; (b) intermediate AMD cases with pigmentary changes 

in the retinal pigment epithelium or more than five macular drusen greater than 63 μm in 

diameter and age at first diagnosis more than 50 years old; or (c) controls without known 

advanced or intermediate AMD.166 The individual level AMD phenotype data and genetic 

data are available in the database of Genotypes and Phenotypes (dbGaP, study accession: 

phs001039.v1.p1).166 We downloaded the imputation data for 35,358 participants. The 

imputation was based on the 1000 Genomes Project reference panel (1000 Genomes 

Project Phase I, version 3) using Minimac.166,377 SNPs with imputation quality score >0.3 

and MAF >0.01 were retained for association analysis. In our association analysis, we 

removed non-European ancestry participants based on the first two principal components 

inferred ancestry.166 Finally, we included 12,711 advanced AMD cases (8,544 CNV, 2,656 

GA, and 1,511 mixed AMD [both of CNV and GA] cases), 5,336 intermediate AMD cases, 

and 14,590 controls in our analysis (Supplementary Table 2). We ran GWAS analyses for 

12,711 advanced AMD cases and other AMD subtypes with 14,590 controls in PLINK 

software (version v2.00a1LM) adjusting for sex, age, and the first ten PCs.  

 

6A.2.4 Statistical Analysis 
To assess the power of our MR analyses, we used the mRnd 

(http://cnsgenomics.com/shiny/mRnd/) method to evaluate power for different AMD 

subtypes.378 We conducted two-sample MR for circulating CRP levels and AMD risk using 

inverse-variance weighted (IVW) method as the main analysis.81,379 We verified the 

estimates using the MR weighted median and MR-Egger methods to allow violations of MR 

assumptions.71,380 Specifically, the weighted median MR method allows genetic variants 

representing over 50% of the weight in the MR analysis are valid instruments, while MR-

Egger method can detect and correct for the bias due to directional pleiotropy (pleiotropic 

effects of genetic instruments do not average to zero).76,381 The intercept from MR-Egger 

method was used to assess directional pleiotropy (i.e. intercept P value < 0.05).76 Although 

pleiotropy is concerning, if the pleiotropic effects are equally to be positive or negative (no 

directional pleiotropy), the overall estimate would be unbiased.381 We also used the funnel 

plot and MR-PRESSO method to evaluate bias from outliers and assess the heterogeneity 

of genetic instruments.76,77 To further assess potential pleiotropic effects of related risk 

factors, we conducted a multivariable MR analysis.79,382,383 In univariate MR analysis, the 

causal effect of a risk factor (CRP level) on the outcome (AMD) was assessed via genetic 
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variants that are solely associated with that specific risk factor. The univariate IVW MR 

method is a weighted linear regression method to regress the effects of genetic instruments 

on AMD (outcome) against their effects on CRP level (exposure), with a forced intercept 

term at zero and weighted by inverse-variance. In multivariable MR analysis, we conducted 

GWAS for other potential AMD risk factors including smoking, BMI, SBP, HDL-C, and 

HbA1c. The analytic framework for multivariable MR-IVW method is similar to univariable 

MR-IVW except regressing on the effects of multiple risk factors in a single regression 

model.79 In general, the univariate MR estimates the total effect of the circulating CRP on 

AMD risk, whereas multivariable MR could estimate the direct causal effect of circulating 

CRP on AMD risk when conditioned on the presence of other AMD risk factors.79,384 

We performed MR analyses using R packages MendelianRandomization and 

TwoSampleMR.76,385 All analyses were performed with R (version 3.4.1).216 

 

6A.3 Results 

6A.3.1 Genetic instruments and statistical power 
In our UKB circulating CRP GWAS, we identified 526 independent genome-wide significant 

SNPs as genetic instruments (Supplementary Table 3), which explained 13% of the variance 

of circulating CRP levels (Supplementary Figure 2). Our MR analyses yield adequate power 

to detect moderate effect sizes (e.g. odds ratio [OR] 1.2 per standard deviation increase of 

circulating CRP levels); our power for advanced AMD, intermediate, GA, CNV, and mixed 

AMD is 100%, 99%, 91%, 100%, and 75%, respectively (Supplementary Table 4). 

 

6A.3.2 Circulating CRP levels are associated with advanced AMD 
The MR scatter plot indicates that higher serum CRP levels were associated with increased 

risk of advanced AMD (Figure 1). The overall MR-IVW OR of advanced AMD per standard 

deviation (SD, 4.34 mg/L) increase in circulating CRP levels was 1.31 (95% confidence 

interval [CI]: 1.19 to 1.44, P = 5.2 × 10-8, Table 1), which is 1.06 for each one mg/L increase 

in circulating CRP levels. Another way of interpreting these results is to consider a more 

clinically relevant change. For example we can consider a change in CRP for those with 

high (> 3 mg/L) versus low (< 3 mg/L) levels. The estimated odds ratio for the difference 

between these groups is 1.29 (exp(loge1.31 / 4.34*4.09); where 4.09 mg/L is the change in 

CRP between the median level in the high group and the median level in the low group). 
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The estimation between circulating CRP levels and advanced AMD was similar to the results 

from MR-Egger method (OR = 1.41, 95% CI: 1.22 - 1.63, P = 1.9 × 10-6) and MR weighted 

median method (OR = 1.17, 95% CI: 1.00 - 1.37, P = 0.046) with overlapping confidence 

intervals. We found no evidence of directional pleiotropy effects based on MR-Egger 

intercept test (intercept -0.003, P = 0.15). The MR-PRESSO outlier-corrected result was not 

meaningfully different from the MR-IVW estimate (OR = 1.17, 95% CI: 1.07 - 1.29, P = 8.2 

× 10-4) and the MR funnel plot showed no evidence of asymmetry (Supplementary Figure 

3). To further investigate whether pleiotropy effects distorted our estimates, we also 

conducted a multivariable Mendelian randomization analysis to adjust for other potential 

AMD risk factors including: smoking; body BMI; SBP; HDL-C; and HbA1c. The association 

between circulating CRP levels and advanced AMD was essentially unchanged in 

multivariable MR analysis (OR=1.27, 95% CI: 1.14 to 1.40, P = 7.1 × 10-6). The consistency 

of total effect and direct effect of CRP levels on AMD risk based on univariate and 

multivariable MR estimates supported an independent association between circulating CRP 

levels and the risk of AMD (Table 1).  

 

 

 

 
Figure 1. Serum C-reactive protein-increasing risk variants are associated with 
increased risk of advanced age-related macular degeneration.  
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The x-axis shows the estimates for the 526 genetic instruments for serum C-reactive protein levels, 

the y-axis shows the estimates (log odds ratios) of the effects of the same variants on advanced 

age-related macular degeneration. The Mendelian randomization (MR) inverse-weighted (IVW), MR-

Egger, simple median and weighted median method lines are plotted with red, green, blue, and 

purple lines, respectively. 

 

Table 1. Mendelian randomization estimates of the associations between serum C-
reactive protein levels and age-related macular degeneration. 

Trait1 Method OR2 95% CI P-value 
Advanced AMD IVW 1.31 [1.19, 1.44] 5.2 × 10-8 

 Multivariable MR3 1.27 [1.14, 1.40] 7.1 × 10-6 

 Weighted median 1.17 [1.00, 1.37] 0.047 
 MR-Egger 1.41 [1.22, 1.63] 1.9 × 10-6 

 (intercept) -0.003 [-0.007, 0.001] 0.15 
Intermediate 
AMD 

IVW 
1.15 [1.04, 1.27] 7.1 × 10-3 

 Multivariable MR 1.12 [1.00, 1.24] 0.046 
 Weighted median 1.1 [0.92, 1.32] 0.29 
 MR-Egger 1.25 [1.08, 1.45] 2.7 × 10-3 

 (intercept) -0.003 [-0.008, 0.001] 0.11 
GA AMD IVW 1.28 [1.11, 1.48] 7.3 × 10-4 

 Multivariable MR 1.19 [1.02, 1.38] 0.03 
 Weighted median 1.07 [0.82, 1.38] 0.63 
 MR-Egger 1.21 [0.98, 1.50] 0.08 
 (intercept) 0.002 [-0.004, 0.008] 0.49 
CNV AMD IVW 1.28 [1.15, 1.43] 3.5 × 10-6 

 Multivariable MR 1.26 [1.13, 1.42] 5.4 × 10-5 

 Weighted median 1.25 [1.05, 1.48] 0.01 
 MR-Egger 1.39 [1.19, 1.62] 3.1 × 10-5 

 (intercept) -0.003 [-0.007, 0.001] 0.17 
Mixed AMD IVW 1.52 [1.28, 1.79] 1.3 × 10-6 

 Multivariable MR 1.48 [1.23, 1.77] 2.2 × 10-5 

 Weighted median 1.61 [1.17, 2.21] 3.3 × 10-3 

 MR-Egger 2.08 [1.63, 2.67] 6.7 × 10-9 

 (intercept) -0.01 [-0.02, -0.005] 6.9 × 10-4 
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All AMD IVW 1.26 [1.16, 1.37] 1.1 × 10-7 

 Multivariable MR 1.23 [1.12, 1.34] 1.2 × 10-5 

 Weighted median 1.17 [1.02, 1.34] 0.03 
 MR-Egger 1.36 [1.21, 1.55] 9.9 × 10-7 

 (intercept) -0.003 [-0.007, 0.0004] 0.08 
AMD, age-related macular degeneration; CI, confidence interval; IVW, inverse-variance weighted; MR, 

Mendelian randomization; OR, odds ratio.  
1 Different subtypes of age-related macular degeneration: advanced AMD, intermediate AMD, geographic 

atrophy (GA) AMD, choroidal neovascularization (CNV) AMD, mixed AMD (CNV and GA), and all AMD (both 

of intermediate AMD and advanced AMD). 
2 The intercepts for MR-Egger are shown on the raw scale rather than the exponential scale.   
3 Multivariable Mendelian randomization analysis is a regression-based MR method adjusting here for the 

effects of smoking, body mass index, systolic blood pressure, high-density lipoprotein cholesterol, and glycated 

haemoglobin (HbA1c). 

 

 

6A.3.3 Sensitivity analysis 
We constructed genetic instruments for circulating CRP by removing participants with serum 

CRP > 10 mg/L and adjusting for body mass index (BMI) in circulating CRP GWAS. The 

average MR-IVW OR of advanced AMD per SD (1.83 mg/L) increase in circulating CRP 

levels was 1.22 (95% CI: 1.09 - 1.37, P = 6.4 × 10-4). We also repeated our MR analysis 

using 44 previously reported circulating CRP variants (independent from the UKB cohort) as 

genetic instruments,376 the estimation was similar to our main analysis (OR per unit change 

in the natural-log-transformed CRP (mg/L) was 1.40, 95% CI: 1.16 - 1.70, P = 5.4 × 10-4); 

this shows our results are robust to the particular SNP instruments used, although as 

expected our power is highest (and consequential our confidence intervals are narrowest) 

with the full set of genome-wide significant SNPs.  

 

6A.3.4 Circulating CRP levels are associated with different AMD subtypes 
We then evaluated the causal relationships between circulating CRP levels and different 

AMD subtypes (Table 1 and Supplementary Figure 4). The MR-IVW ORs of circulating CRP 

levels on different AMD subtypes were highly consistent: for intermediate AMD, GA, CNV, 

and mixed AMD types the ORs were 1.15 (95% CI: 1.04 - 1.27, P = 7.1 × 10-3), 1.28 (95% 

CI: 1.11 - 1.48, P = 7.3 × 10-4), 1.28 (95% CI: 1.15 - 1.43, P = 3.5 × 10-6),  and 1.52 (95% 

CI: 1.28 - 1.79, P = 1.3 × 10-6), respectively. Our results indicated circulating CRP levels 
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were causally associated with each of intermediate AMD, CNV, GA, and mixed AMD types. 

These results show that the overall findings are unlikely to be driven by a very strong 

association on specific AMD subtypes, suggesting CRP may be involved in different stages 

and types of AMD progression. 

 

6A.4 Discussion 

In this study, we conducted comprehensive MR analyses to investigate the causal 

relationships between circulating CRP levels and the risk of different AMD subtypes. We 

found that higher circulating CRP levels were associated with increased risk of advanced 

AMD and other AMD subtypes. These findings enhance our understanding of the underlying 

pathological mechanism of AMD and could have clinical utility for identification of high-risk 

individuals.  

 

Our study corroborates results from previous observational studies and meta-analysis 

showing elevated circulating CRP is a risk factor for AMD.159,363,364,367,368 A meta-analysis 

showed that the OR for higher circulating CRP level (CRP >3 mg/L vs <1 mg/L) was 2.19 

(95% CI: 1.38 - 3.47) for advanced AMD; the OR was 1.31 (95% CI: 1.04 - 1.65) for 

combined early and late AMD.159 Another pooled analysis of five cohorts also indicated that 

elevated CRP levels (CRP >3 mg/L vs <1 mg/L) increased the risk of overall incident AMD 

(OR = 1.49; 95% CI: 1.06 - 2.08) and neovascular AMD (OR = 1.84; 95% CI: 1.14 - 2.98).368 

In our MR analysis, the OR is also higher for advanced AMD (OR = 1.31; 95% CI: 1.19 - 

1.44) compared with only intermediate AMD (OR = 1.15; 95% CI: 1.04 - 1.27) albeit with 

overlapping CIs. These results may indicate circulating CRP levels have a larger effect on 

advanced AMD than early or intermediate AMD. However, some observational studies failed 

to obtain evidence for the association between circulating CRP levels and AMD risk.365,366 

The inconsistent results from observational studies may be due to selection bias of AMD 

subtype composition (small proportion of advanced AMD cases), small sample size, and 

sub-optimal study designs (i.e. susceptible to confounding for cross sectional or case-control 

designs).365,366 The key advantage of Mendelian randomization analysis is that the causal 

inference drawn through genetic instruments is less likely to be susceptible to confounding 

and reverse causation. As an ancillary analysis we used reverse-direction MR to examine 

the effect of AMD on circulating CRP levels but found no effect (MR-IVW P value 0.56).70 
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Several studies investigated the association of genetic variants in CRP gene and AMD risk, 

but found no evidence for an association.370–373 Although the variants in CRP gene that were 

used in these studies are associated with circulating CRP levels, these SNPs in aggregation 

only explain a relatively small proportion of the variance in circulating levels of CRP (r2 < 

2%), hindering power  for a proper MR analysis.373 Moreover, the sample sizes for AMD 

cases and controls in their studies were relatively small. In our MR analysis, we conducted 

the largest GWAS for circulating CRP levels to date, and the lead 526 circulating CRP levels 

related SNPs explained 13% of the variance. In our sensitivity analysis, we also used a 44 

SNP set (explaining about 7% of the variance; our results were similar, although as expected 

confidence intervals were considerably wider.376  

 

A concern in MR analysis is the possibility of pleiotropic effects of genetic instruments.381 It 

is possible that a subset of our CRP variants might have been associated with AMD risk 

through measured or unmeasured confounders, which may violate one of the MR 

assumptions.70 To address this concern, our sensitivity MR analysis performed using the 

MR-Egger and weighted median methods results in similar conclusion showing that our 

findings were robust.82,374 We found no evidence of directional pleiotropy based on MR-

Egger intercept test and the MR funnel plot showed no evidence of asymmetry. We also 

used a multivariable Mendelian randomization analysis to adjust for potential AMD risk 

factors including smoking, BMI, SBP, HDL-C, and HbA1c. The associations between 

circulating CRP levels and advanced AMD or other AMD subtypes in the multivariable model 

were similar to those estimated from the main analysis. The sensitivity analysis to construct 

genetic instruments for circulating CRP by removing participants with serum CRP > 10 mg/L 

and adjusting for BMI or using 44 previously reported circulating CRP variants also showed 

similar results to the main analysis. These results indicate the finding of an association 

between circulating CRP and AMD risk is unlikely to be driven by horizontal pleiotropy 

effects.   

 

There are several limitations in our study. In the GWASs of circulating CRP and AMD, we 

only included European ancestry participants, thus it is unclear whether our results are also 

applicable to people not of European ancestry. The generalizability of the association 

between circulating CRP levels and AMD risk in other ethnic groups would require further 

investigation. Secondly, we estimated the overall population-averaged effect of elevated 
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circulating CRP levels and AMD risk assuming linearity, and did not attempt to dissect 

potential non-linear relationships between circulating CRP levels and AMD risk. Thirdly, the 

MR findings reflect the change in AMD risk due to a genetically predisposed (lifetime) 

change in circulating CRP levels, hence the short-term effect of increasing circulating CRP 

levels on AMD risk is unknown.  

 

In conclusion, elevated circulating CRP levels were associated with increased risk of AMD. 

Our study provided strong evidence for a causal effect of inflammation as proxied via higher 

circulating CRP concentrations on AMD risk, regardless of AMD disease subtypes. Further 

studies are warranted to investigate the clinical utility of serum CRP levels in combination 

with the other AMD predictors for identification of high-risk individuals and therapeutic 

treatment in preventing AMD.   
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Chapter 6B. The effects of eight serum lipid biomarkers on age-related 
macular degeneration risk: a Mendelian randomization study 

Age-related macular degeneration (AMD) is a leading cause of vision loss. While lipids have 

been studied extensively to understand their effects on cardiovascular diseases, their 

relationship with AMD remains unclear. In this study, two-sample Mendelian randomization 

(MR) analyses were performed systematically to evaluate the causal relationships between 

eight serum lipid biomarkers, consisting of apolipoprotein A1 (ApoA1), apolipoprotein B 

(ApoB), total cholesterol (CHOL), high-density lipoprotein cholesterol (HDL-C), direct low-

density lipoprotein cholesterol (LDL-C), lipoprotein A (Lp(a)), triglycerides (TG), and non-

HDL cholesterol (non-HDL-C), and the risk of different AMD stages and subtypes. We 

derived 64 to 407 genetic instruments for eight serum lipid biomarkers in 419,649 

participants of European descent from the UK Biobank cohort. We conducted genome-wide 

association studies (GWAS) for 12,711 advanced AMD cases (8,544 choroidal 

neovascularization [CNV] and 2,656 geographic atrophy [GA] specific AMD subtypes) and 

5,336 intermediate AMD cases with 14,590 controls of European descent from the 

International AMD Genomics Consortium. Higher HDL-C and ApoA1 levels increased the 

risk of all AMD subtypes. LDL-C, ApoB, CHOL, and non-HDL-C levels were associated with 

decreased risk of intermediate and GA AMD but not with CNV. TG levels were associated 

with decreased risk of different AMD subtypes. Sensitivity analyses revealed no evidence 

for directional pleiotropy effects. In our multivariable MR analyses, adjusting for the effects 

of correlated lipid biomarkers yielded similar results. These results suggest the role of lipid 

metabolism in drusen formation and particularly in AMD development at both the early and 

intermediate stages. Mechanistic studies are warranted to investigate the utility of lipid 

pathways for therapeutic treatment in preventing AMD. 
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6B.1 Introduction 

Age-related macular degeneration (AMD) is a leading cause of vision loss among elderly in 

western countries.134,138,322 The global prevalence of AMD is 8.7% among individuals aged 

45 years and over, with a higher prevalence of 12.3% in Europeans.134 The progression of 

AMD is classified as early, intermediate, and late stages.135,136 The clinical hallmark in the 

early stage of AMD is the presence of drusen, which are formed by deposits of extracellular 

debris between the retinal pigment epithelium and Bruch's membrane.386 The initiation and 

formation of drusen are not yet well understood; histochemical studies support an “oil spill” 

model, indicating lipid-rich extracellular lesions in drusen.387–389 Approximately 40% of druse 

content is comprised of lipids.390 Intermediate AMD is characterized by extensive 

intermediate drusen or at least one large drusen of diameter ≥125 μm.391 AMD has two 

advanced types: 1) geographic atrophy (GA, dry) AMD, accounting for 90% of AMD, is 

characterized by drusen and retinal pigment epithelium degeneration (focal 

hyperpigmentation or atrophy); and 2) choroidal neovascularization (CNV, wet) AMD, is 

characterized by abnormal vascular proliferation underneath the retina. Currently, anti-

vascular endothelial growth factor therapies have been used to reduce the progression of 

CNV.137 However, the treatment is not curative, and there are no effective medications for 

GA. Moreover, a better scenario is to treat AMD at an earlier stage before serious vision 

loss occurs. It is therefore important to find new pathogenesis pathways and intervention 

targets for AMD.  

 

In recent years, epidemiological and genetic studies have shown the potential role of lipids 

in AMD risk.145–151 For instance, an observational meta-analysis reported a higher level of 

high-density lipoprotein cholesterol (HDL-C) was associated with an increased risk of AMD, 

whereas higher levels of total cholesterol (CHOL), low-density lipoprotein cholesterol (LDL-

C), and triglycerides (TG) were associated with a decreased risk of AMD.146 However, 

observational studies have shown inconsistent results respecting the association between 

lipids and AMD risk,146,149 and are susceptible to confounding factors or influenced by 

reverse causality.145,146,150 Genome-wide association studies have identified more than 30 

genes associated with AMD, and some of them are also associated with lipid traits, such as 

ABCA1, APOE, CETP, LIPC, and VEGFA.166  
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Mendelian randomization (MR) is an approach to investigate the causal relationships 

between risk factors and outcomes via the use of genetic variants as natural experiments. 

Compared with traditional observational studies, MR is less likely to be affected by 

confounding or reverse causation.70,374 Two previous MR studies have shown a causal 

relationship between increased HDL-C levels and advanced AMD risk.147,148 However, the 

relationship between HDL-C and different AMD subtypes remains unclear. More importantly, 

the associations between different lipid subfractions, such as apolipoprotein A1 (ApoA1), 

apolipoprotein B (ApoB), and lipoprotein A (Lp(a)), and AMD risk have not been well studied. 

Elucidating these causal relationships might help us identify lipid-modifying therapeutics 

targets for AMD.  

 

In this study, we systematically investigate the association between eight major serum lipid 

biomarkers (ApoA1, ApoB, CHOL, HDL-C, LDL-C, Lp(a), TG, and non-HDL-C) available in 

UK Biobank and the risk of different AMD subtypes using large scale genetic data from the 

International AMD Genomics Consortium via a two-sample MR framework. To our 

knowledge, our study is the first to consider the effect of a wide range of lipid biomarkers 

(eight in total, including ApoA1, ApoB, and Lp(a)) on the risk of AMD and its subtypes. This 

study would help us glean a better understanding of the role of lipids in different AMD stages 

and subtypes, and provide therapeutic implications for AMD. 

 

6B.2 Methods 

We performed genome-wide association studies (GWAS) for each of the eight serum lipid 

biomarkers in the UK Biobank cohort to identify genetic instruments. We then conducted a 

series of GWAS analyses on AMD outcomes of interest (namely, for intermediate AMD, 

advanced AMD and its subtypes CNV and GA) using the individual level data from the 

International AMD Genomics Consortium (independent samples from UK Biobank). Causal 

inferences can then be drawn via two-sample MR analysis to evaluate the (genetic) causal 

relationships between each of the eight serum lipid biomarkers and different AMD subtypes 

using GWAS summary statistics.375 

 

The UK Biobank study was approved by the National Research Ethics Service Committee 

North West—Haydock, all participants provided informed written consent, and all study 
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procedures were performed in accordance with the World Medical Association Declaration 

of Helsinki ethical principles for medical research. In the International AMD Genomics 

Consortium, all groups collected data according to the Declaration of Helsinki principles. All 

study participants provided informed consent, and protocols were reviewed and approved 

by the local ethics committees.166 

 

6B.2.1 Serum lipid biomarkers in UK biobank 
The UK Biobank is a prospective cohort study with deep genetic and phenotypic data 

collected on half a million people aged between 40-69 years across the United Kingdom.130 

The sample collection and quality control procedures for serum lipid biomarkers were 

described in detail elsewhere (see: 

http://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/biomarker_issues.pdf). We identified 

438,870 individuals who were genetically similar to those of white-British ancestry.126 For 

lipid biomarker GWAS analyses, we only included participants of white British ancestry.126 

The serum lipid biomarkers ApoA1, ApoB, CHOL, HDL-C, direct LDL-C, Lp(a), and TG, were 

measured using standard procedures in Beckman Coulter AU5800. We calculated non-

HDL-C by subtracting HDL-C from total cholesterol.392 The sample size and characteristics 

for each of the serum lipid biomarkers were presented in Table 1. The distributions of some 

serum lipid biomarkers were right-skewed (such as Lp(a) and TG, Supplementary Figure 

S1). We applied a rank-based inverse-normal transformation to the concentration values for 

each lipid biomarker in order to interpret genetic estimates in standard deviation (SD) 

units.267 We computed the phenotypic correlation between lipid biomarkers using the 

transformed concentration values (Supplementary Figure S2).   

 

6B.2.2 Genetic instruments for serum lipid biomarker 
For the GWAS of serum lipid biomarkers, we conducted linear mixed models using BOLT-

LMM software (version 2.3).210 The models were adjusted for sex and age. The first ten 

principal components were also included as covariates to speed up the convergence of 

BOLT-LMM’s mixed model computations. The genetic instruments for each of the serum 

lipid biomarkers were selected based on the following criteria: 1) P-value from GWAS < 

5×10-8; 2) linkage disequilibrium (LD) between single nucleotide polymorphisms (SNPs) r2 

< 0.001 within a clumping window of 10,000 kilobase;383 and 3) the SNPs being present in 

the AMD GWAS summary statistics (described below). We randomly selected 5,000 UK 
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Biobank white British ancestry individuals as the reference panel.35 The LD-clumping 

procedure was performed using PLINK (version 1.9).182  
 

6B.2.3 Age-related macular degeneration datasets 
The International AMD Genomics Consortium has collected the largest European AMD 

samples (16,144 advanced AMD cases and 17,832 controls, Supplementary Table S1).166 

The detailed description of the study design, AMD subtype definitions, and genetic data were 

presented previously.166 In brief, AMD samples were gathered from 26 studies with each 

including: 1) intermediate AMD cases with more than five macular drusen greater than 63 

μm in diameter or pigmentary changes in the retinal pigment epithelium and age at first 

diagnosis more than 50 years old; 2) advanced AMD cases with CNV and/or GA in at least 

one eye and age at first diagnosis more than 50 years old; 3) controls without known 

advanced or intermediate AMD.166 The individual level AMD phenotypic and genetic data 

were obtained from the database of Genotypes and Phenotypes (dbGaP, study accession: 

phs001039.v1.p1).166 The genetic imputation was based on the 1000 Genomes Project 

reference panel (1KGP Phase I, version 3) using Minimac.166 The SNPs were filtered by 

imputation quality score (> 0.3) and minor allele frequency (MAF > 0.01) for association 

analysis. In the association analysis, non-European ancestry participants were removed 

based on the first two principal components inferred ancestry.166 For different AMD subtype 

GWASs, we included 5,336 intermediate AMD cases, 8,544 CNV cases, 2,656 GA cases, 

12,711 advanced AMD cases (CNV, GA cases, and 1,511 mixed AMD cases with both CNV 

and GA), and 14,590 controls. The association analyses were implemented in PLINK 

software (version v2.00a1LM) adjusting for sex, age, and the first ten principal components.  

 

6B.2.4 Statistical Analysis 
The R packages MendelianRandomization and TwoSampleMR were used for MR 

analyses.76,385 All general analyses were performed with R (version 3.4.1). We used a two-

sided alpha at 0.00625 (0.05/8) to account for the multiple testing of eight lipid-related traits, 

although given the high genetic correlation between the lipid-related traits the Bonferroni 

correction can be considered overly conservative. 

 

6B.2.5 Power calculation for MR analysis 
We first assessed the power of the MR analyses for different lipid biomarkers with different 
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AMD subtypes. We calculated the phenotypic variance explained by genetic instruments for 

each biomarker using the formula (2 × MAF × (1 - MAF) × beta2)/var(biomarker), where MAF 

refers to the minor allele frequency, beta is the estimated effect size of each SNP, and 

var(biomarker) is variance (typically very close to one) after the rank-based inverse-normal 

transformation.393 We assumed different effect sizes of lipid biomarkers on AMD risk, and 

used the mRnd (http://cnsgenomics.com/shiny/mRnd/) method to calculate the power for 

MR analyses.378  
 

6B.2.6 Univariable Mendelian randomization analysis 
For the two-sample MR analysis between each lipid biomarker and AMD risk, the univariable 

inverse-variance weighted (MR-IVW) method was used in the main analysis.81,379 MR-IVW 

is a weighted linear regression method to regress the effects of genetic instruments on AMD 

(outcome) against their effects on lipid biomarker (exposure), with a forced intercept term at 

zero and weighted by inverse-variance.81  

 

6B.2.7 Sensitivity analysis  
We then conducted various sensitivity analyses which allow violations of MR assumptions 

to assess the robustness of MR findings.381 In particular, the weighted median MR method 

enables robust inference to be made providing more than 50% of the genetic variants are 

valid instruments.381 The MR-Egger method models an intercept term to detect and correct 

for bias due to directional pleiotropy.76,381 Although pleiotropy is concerning, if the pleiotropic 

effects of genetic instruments average to zero (equally to be positive or negative, no 

directional pleiotropy), the overall estimate would be unbiased.381 The intercept term from 

MR-Egger method was used to assess evidence for directional pleiotropy (i.e. intercept 

close to zero and P value > 0.05).76 We also applied the MR pleiotropy residual sum and 

outlier (MR-PRESSO) method to evaluate potential bias from outliers and assess the overall 

heterogeneity of our MR estimates.77 MR-PRESSO method can identify outlier variants and 

correct for their effects via outlier removal (MR-PRESSO outlier test). We also implemented 

a leave-one-chromosome-out analysis by excluding genetic variants in each chromosome 

out in turn and re-computing the IVW MR estimates, as a means to assess the influence of 

particular genes from the same chromosome on the overall MR findings. 

Bi-directional MR analyses were used to estimate the potential effects of different AMD 

subtypes on serum lipid biomarker levels. In the reverse-directional analysis, the genetic 
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instruments for different AMD subtypes were selected via similar criteria as was the case for 

serum lipid biomarkers as described earlier. 

 

6B.2.8 Multivariable Mendelian Randomization analysis 
We performed a regression-based multivariable MR (MVMR) analysis by selecting groups 

of exposures to avoid collinearity (Figure 1). In the multivariable MR-IVW analysis, the 

genetic instrumental variables associated with any of the included set of exposures were 

included.79,394 The multivariable MR-Egger method is an extension of univariable MR-Egger 

method to account for multiple lipid biomarkers, and at the same time models an intercept 

term to correct for both measured and unmeasured pleiotropy.87 

We also used a recently developed MVMR approach based on Bayesian model averaging 

(MR-BMA) that scales to high-throughput data to detect true causal risk factors even when 

the candidate risk factors are highly correlated.88,395 In the MR-BMA analysis, we included 

all genetic variants that were genome-wide significant for any lipid biomarker and selected 

807 independent genetic variants as instrumental variables. The genetic correlation between 

lipid biomarkers was computed using the effect sizes of the independent genetic variants. 

The MR-BMA used a shotgun stochastic search algorithm to evaluate the posterior 

probability of all combinations of risk factors and then computed for each risk factor its 

marginal inclusion probability. More details were given in the Supplementary Material.  

 

6B.3 Results 

6B.3.1 Serum lipid biomarkers, genetic instruments and statistical power 
We included 419,649 participants with at least one lipid biomarker measured in UK Biobank. 

The proportion of females was 54% and the mean age was 56.83 (SD 8.01) years old (Table 

1). We observed a high genetic correlation between ApoA1 and HDL-C, ApoB and LDL-C / 

CHOL / non-HDL-C levels (maximum genetic association of |r| < 0.978, Figure 1 and 

Supplementary Figure S3). For different serum lipid biomarkers, we identified 64 to 407 

genome-wide significant independent variants as genetic instruments, and they collectively 

explained 9% to 16% of the phenotypic variance (Table 1). We calculated the MR analysis 

statistical power for different AMD subtypes; even with 9% variance explained, our power 

for intermediate, advanced AMD, GA, and CNV AMD subtypes was 95%, 100%, 79%, 98%, 

respectively, assuming moderate effect sizes (e.g. odds ratio [OR] 1.2, Supplementary Table 
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S2).  

 
Table 1. Serum lipid biomarkers in UK Biobank. 

Variables N Mean (SD) Median (IQR) 
N 
SNPs2 

Variance 
explained 

Sex 419649 227003 (54%)1 - - - 

Age, years 419649 56.83 (8.01) 58 (51 to 63) - - 

Apolipoprotein A1 (ApoA1), g/L 382867 1.54 (0.27) 1.52 (1.35 to 1.7) 407 0.11 

Apolipoprotein B (ApoB), g/L 417522 1.03 (0.24) 1.02 (0.87 to 1.18) 241 0.13 

Cholesterol (CHOL), mmol/L 419516 5.71 (1.14) 5.67 (4.93 to 6.44) 231 0.09 

HDL cholesterol (HDL-C), 

mmol/L 384986 1.45 (0.38) 1.4 (1.18 to 1.68) 488 0.12 

LDL direct (LDL-C), mmol/L 418780 3.57 (0.87) 3.53 (2.96 to 4.13) 215 0.10 

Lipoprotein A (Lp(a)), nmol/L 334646 44.12 (49.49) 20.11 (9.33 to 60.1) 64 0.16 

Triglycerides (TG), mmol/L 419185 1.76 (1.02) 1.49 (1.06 to 2.16) 394 0.11 

non-HDL-C, mmol/L 384915 4.26 (1.08) 4.2 (3.49 to 4.94) 207 0.09 

1 The frequency and percentage of females are presented.  
2 Number of genetic instruments.  

IQR, interquartile range; N, sample size; SD, standard deviation.  

The biochemistry markers are described on http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=17518. 
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Figure 1. The genetic correlation and cluster of eight serum lipid biomarkers.  
The left panel displays genetic correlation between each pair of serum lipid biomarkers based on N 

= 807 independent genetic variants that were genome-wide significant for any lipid biomarker. The 

right panel shows the cluster of the eight serum lipid biomarkers. 

 

 

6B.3.2 The associations between eight serum lipid biomarkers and 
different AMD subtypes 
In the univariable MR analysis, one SD higher HDL-C levels increased the risk of advanced 

AMD by 19% (MR-IVW OR 1.19, 95% CI 1.07 - 1.33, P value 1.2 × 10-3). The association 

was consistent across different AMD subtypes and across different MR methods (weighted 

median, MR-Egger, Figure 2 and Supplementary Table S3). As expected given the high 

correlation with HDL-C, higher ApoA1 levels were also associated with increased risk of 

different AMD subtypes.  

Raised LDL-C levels were nominally associated with decreased risk of advanced AMD (OR 

0.87, 95% CI 0.76 - 1.00, P value 0.04). However, when split by AMD subtype, the 

association was primarily with GA (OR 0.70, 95% CI 0.59 - 0.83, P value 3.8 × 10-5) and 

intermediate AMD (OR 0.77, 95% CI 0.67 - 0.87, P value 6.5× 10-5); there was no strong 

evidence for association with CNV AMD (OR 0.93, 95% CI 0.80 - 1.08, P value 0.34). 

Similarly, for the correlated traits ApoB, CHOL and non-HDL-C, all were not associated with 

CNV AMD, but were associated with GA and intermediate AMD.  
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Higher levels of TG were associated with decreased risk of different AMD subtypes, and the 

estimates were broadly consistent across different AMD subtypes (intermediate AMD OR 

0.74, 95% CI 0.66 - 0.83, P value 2.5 × 10-7; advanced AMD OR 0.81, 95% CI 0.72 - 0.90, 

P value 1.4 × 10-4). Lp(a) levels were not associated with any of the AMD subtypes 

(intermediate AMD OR 0.96, 95% CI 0.85 - 1.09, P value 0.53; advanced AMD OR 1.00, 

95% CI 0.89 - 1.12, P value 0.94) even though the variance explained by the genetic 

instruments for Lp(a) was higher than any other lipid biomarkers. 

 

 
Figure 2. Univariable Mendelian randomization estimates of the associations between 
eight serum lipid biomarkers and different age-related macular degeneration 
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subtypes.  
The x-axis is the odds ratio (OR) of the effects of lipid biomarkers on age-related macular 

degeneration (AMD) subtypes. The vertical dashed line is the reference at OR=1. The y-axis 

presents different AMD subtypes, highlighted in different colours. Different Mendelian randomization 

methods are displayed in different line types (MR-IVW, solid line; MR-Egger, dashed line; Weighted 

median, dotted line).  

 

 

6B.3.3 Sensitivity analysis 
We applied MR median-weighted and MR-Egger methods to validate the MR-IVW estimates 

(Figure 2, Supplementary Table S3); their estimates were broadly consistent with the MR-

IVW method with overlapping confidence intervals. The MR-Egger intercepts showed no 

evidence of directional pleiotropy effects (intercepts were approximately 0, P > 0.05).  

We conducted MR-PRESSO outlier-corrected tests, and found that most of the MR analyses 

were not meaningfully changed after removing outlier variants except the effects of HDL-C, 

ApoA1 and TG on CNV AMD risk (Supplementary Figure S4 and Supplementary Table S4). 

The removed outlier SNPs were mainly from genes CETP, LIPC, APOE, and ABCA1. Given 

the strong associations between variants in these genes and both lipid biomarkers and AMD 

risk, removing these variants would affect the estimated effect sizes in MR analyses.166,396 

To further investigate the robustness of MR results, we applied a leave-one-chromosome-

out analysis by leaving genetic variants in each chromosome out in turn for the MR analyses 

(Supplementary Figure S5). We found a striking difference in the results for Lp(a) depending 

on chromosome 6. However, most of the variance in Lp(a) is controlled by variants in LPA 

(96.9%, in chr6). We found no association between the SNP rs10455872 (the top SNP in 

LPA region associated with Lp(a) levels) and AMD risk (OR = 1.03, P = 0.40 for advanced 

AMD; OR = 0.97, P = 0.61 for GA AMD). 

 

We found weak evidence of liability towards AMD on lipid traits via reverse-direction MR 

analyses (Supplementary Figure S6). To investigate the influence of lipid-related drugs on 

our MR results, we identified 87,904 participants taking statins (data coding C10AA) in UK 

Biobank.397 We also found 6,030 participants with self-reported or medical electronic health 

records of macular degeneration. We removed both statin users and AMD cases in UK 

Biobank to re-select the genetic instruments for serum lipid biomarkers from GWAS. The 

MR results were unchanged (Supplementary Figure S7).    
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6B.3.4 Multivariable Mendelian randomization 
We conducted multivariable MR analyses (MVMR-IVW method) to estimate the direct 

effects of serum lipid biomarkers on AMD risk conditional on other serum lipid biomarkers. 

We selected groups of exposures to avoid collinearity. In the classic trio (HDL-C, LDL-C and 

TG), we included N = 700 independent SNPs associated with any of the three biomarkers 

as instrumental variables. The associations of HDL-C and LDL-C with AMD risk were 

essentially unchanged in multivariable MR analyses compared with univariable MR analysis 

(first column in Figure 3). We further replaced HDL-C with ApoA1 in the trio (that is ApoA1, 

LDL-C and TG, second column in Figure 3), the results were similar to the trio HDL-C, LDL-

C and TG. The MVMR results for Lp(a), CHOL and non-HDL-C were similar to univariable 

MR results (columns 3, 4, and 5 in Figure 3). The multivariable MR-Egger intercepts showed 

no evidence of directional pleiotropy effects (Supplementary Table S5).  

We conducted multivariable MR-BMA analyses to select causal serum lipid biomarkers. 

When the prior probability was set at 0.125 or 0.25 (corresponding to a priori of one or two 

expected causal biomarkers), we found ApoA1 has relatively higher probabilities and causal 

effects for all AMD subtypes, and TG has the highest probability to be the causal risk factor 

for intermediate AMD (Supplementary Figure S8 and Supplementary Material).  
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Figure 3. Multivariable Mendelian randomization estimates of the associations 
between eight serum lipid biomarkers and different age-related macular degeneration 
subtypes.  
The x-axis is the estimated odds ratio (OR) on AMD subtypes per standard deviation (SD) increase 

in lipid concentration levels for each lipid biomarker evaluated. The vertical dashed line is the 

reference at OR=1. The y-axis lists the different AMD subtypes. The multivariable IVW estimates are 

shown in solid line, while the multivariable estimates adjusted for the MR-Egger intercept are shown 

in dashed line. Each column facet indicates the selected group of exposures in multivariable MR 

analysis, where all independent SNPs associated with any of the included exposures were fitted. 

 

6B.4 Discussion 

We systematically evaluated the effects of eight serum lipid biomarkers on the risk of 

different AMD subtypes. We found that higher HDL-C and ApoA1 levels increased the risk 

of all AMD subtypes, whereas LDL-C, ApoB, CHOL, and non-HDL-C levels appeared to be 

only associated with decreased risk of intermediate and GA AMD. TG levels were 

associated with decreased risk of different AMD subtypes. The role of lipids on 

cardiovascular diseases risk is well studied. Compared with cardiovascular disease risk, 

most of these serum lipid biomarkers showed the opposite direction effects on AMD risk.398 
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These findings suggest varying roles of lipids in different AMD stages and subtypes. 

 

Previous observational studies have suggested a potential relationship between lipid 

biomarkers and AMD risk; however, the results were inconsistent.145,146,150 We found that 

genetically elevated HDL-C levels increased the risk of AMD, consistent with findings from 

previous observational and MR studies.146–148,150 Typically, HDL-C can mediate reverse 

cholesterol transport and have atheroprotective functions, such as anti-inflammatory, 

antioxidant, and endothelial cell maintenance.399 However, dysfunctionally elevated HDL-C 

could have pro-inflammatory and pro-oxidant roles that impair cholesterol efflux and promote 

the accumulation of drusen.400,401 Our results indicate that the effect of HDL-C levels on 

intermediate AMD (OR 1.34, 95% CI 1.20 - 1.49) appeared larger than advanced AMD, 

which was also highlighted in a recent observational study,150 where the effect sizes of 

estimates were broadly consistent with observational studies. We do, however, find 

evidence that the effect predicted by these HDL-C genetic instruments are rather 

heterogeneous. For instance, removing genetic instruments from the gene CETP 

(chromosome 16) attenuated the effect of HDL-C on AMD risk towards the null (shown 

evidently for the CNV subtype); while excluding variants from the gene LIPC (chromosome 

15) amplified the association (Supplementary Figure S4 and S5). These results suggest that 

serum HDL-C risk variants in CETP and LIPC might have counteracting effects on AMD risk, 

as discussed in previous literature.147,150,402 We speculate that HDL-C related genes may 

affect AMD risk via different pathways. As the major apolipoproteins in HDL-C particles 

(genetic correlation 0.96), higher ApoA1 levels also increase the risk of AMD. In our MR-

BMA analysis, serum ApoA1 levels have relatively higher probabilities and effects for AMD 

compared with other lipid biomarkers. A recent study also showed that extra-large and large 

HDL particles are putative risk factors for AMD.88  

 

The relationship between LDL-C and AMD risk has proved controversial in previous 

observational and genetic studies. For instance, a meta-analysis study showed a protective 

tendency between LDL-C levels and AMD risk.146 Further stratified analysis based on AMD 

subtypes revealed a protective effect on early stage, but not on late stage. A recent large-

scale epidemiologic study also indicated that LDL-C levels were only associated with early 

AMD.150 Previous MR studies, by contrast, showed no evidence of association between 

LDL-C levels and advanced AMD risk.147,148 In this study, we observed a nominal association 

between higher LDL-C levels and decreased advanced AMD risk. Importantly, LDL-C levels 
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exhibit a clear protective effect on intermediate and GA AMD subtypes. The nominal 

association between LDL-C and advanced AMD was likely driven by GA AMD subtype even 

though only a smaller proportion of advanced AMD cases were GA in the data sets. For 

ApoB, CHOL, and non-HDL-C, all of them were associated with intermediate and GA AMD, 

but not CNV AMD. Previous observational studies have also shown that drusen are more 

likely to be involved in the development of GA AMD rather than CNV AMD.403,404 Since 

drusen are a major pathological hallmark of early and intermediate stage AMD, these results 

suggest that LDL-C and ApoB may be involved in the formation of drusen in the early and 

intermediate stages of AMD, and the developing of GA AMD;405 in contrast, their roles in 

CNV AMD appear limited. 

 

Previous observational studies have shown that higher TG levels reduce the risk of early 

stage AMD but not late stage.146,150 In our univariable MR analysis, raised TG levels were 

associated with decreased risk of different AMD subtypes; however, the effect size on CNV 

AMD subtype was smaller and was not that robust based on MR-PRESSO outlier-corrected 

tests. In this study, we find no evidence of the association between Lp(a) and AMD risk. 

Serum Lp(a) levels are mainly genetically determined by the genetic variations in LPA gene 

region,406,407 none of which showed association with AMD risk. We found a SNP rs7412 in 

APOE that is both associated with Lp(a) concentrations and AMD risk. However, apoE 

proteins are thought to influence Lp(a) catabolism through lipoprotein receptor clearance 

pathways such as LDL receptor (maintains the plasma levels of LDL) rather than directly 

affect Lp(a) assembly or secretion.408  

 

These findings aid us in the understanding of lipid metabolism in drusen formation and AMD 

development, as well as the clinical implications of modifying blood lipid concentrations in 

preventing AMD. The clinical hallmark of early stage AMD is the presence of drusen, with 

approximately 40% of druse content comprised of lipids. Lipids may be involved in the 

initiation and formation of drusen in the early and intermediate stages. This is supported by 

the associations between HDL-C / LDL-C / TG and intermediate AMD. Both CNV and GA 

AMD are subtypes of advanced AMD, the late stage of AMD that could cause vision loss. 

This study shows that LDL-C and TG are associated with GA AMD, and their roles in CNV 

AMD appear limited, suggesting different pathogenesis pathways for GA and CNV AMD 

subtypes. Currently, there is no effective medications for GA subtype, and the anti-vascular 

endothelial growth factor therapies for CNV are also not curative.137 These Mendelian 
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randomization findings suggest the potential utility of lipid modifying therapies in AMD 

treatment, and shed light on the different roles of lipid subfractions on different AMD 

subtypes (Figure 2). A recent study also showed that high-dose statins may have a particular 

role in large drusenoid deposits AMD patients, and result in regression of large drusen and 

improvement of visual acuity.409 Further clinical trials are warranted to investigate different 

lipid-modifying drugs in specific AMD subtypes rather than a broad range of AMD subtypes.  

 

A strength of this study is that we used large-scale data sets with standard protocols to 

measure lipid biomarkers; this allowed us to systematically evaluate the effects of lipids on 

AMD risk. Compared to traditional observational studies, MR findings are less likely to be 

affected by confounding or bias from reverse causation. To the best of our knowledge to 

date, this is the first study to have comprehensively evaluated the causal relationships 

between lipid / lipoprotein biomarkers and different AMD stages and subtypes through a MR 

framework. In particular, unlike some previous studies we have considered a wide range of 

lipids and lipoproteins. Dyslipidemia has been involved in the formation of drusen, which are 

characterized in the early stage of AMD. This study based on different AMD stages and 

subtypes provides new insights for the role of lipids in AMD risk and development. At the 

same time, our results should be interpreted in light of its limitations. Firstly, this study is 

based on European ancestry participants, the generalizability of our findings in other ethnic 

groups needs further investigation. Moreover, in MR framework, the genetically predisposed 

biomarker changes are assumed to have a linear and lifetime effect on AMD risk. The 

potentially non-linear relationships and short-term effects of these biomarkers are unclear. 

This study indicates the role of circulating lipids on AMD risk; further studies are needed to 

investigate the effects of retina-specific lipid metabolism on AMD risk. Finally, in this study 

we used publicly available AMD samples and were unable to assess the potential selection 

bias due to competing risk, such as coronary artery disease (CAD). We performed an 

exploratory analysis computing the genetic correlation between CAD and AMD and found 

the correlations were close to zero (data not shown). We also conducted a MVMR analysis 

of CAD, LDL-C and TG (as three exposures) on AMD risk, and found no evidence of 

association between CAD and AMD risk  (Supplementary Figure S9), the MVMR results for 

LDL-C were essentially unchanged relative to the previous MVMR results in Figure 3, 

suggesting that broadly speaking our typically elderly AMD samples were not enriched for 

cardioprotective genetic factors; these results suggest our MR findings are unlikely to be 

driven by competing risk of conditions with shared etiology.410 
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Conclusion 
This study provides genetic evidence that elevated circulating HDL-C and ApoA1 levels 

increase the risk of all AMD subtypes, whereas LDL-C, ApoB, CHOL, and non-HDL-C levels 

are particularly associated with decreased risk of intermediate and GA AMD. The 

inconsistent results from previous studies could be partly explained by the large 

heterogeneity of AMD disease (different stages and subtypes) in these studies. This study 

provides new insights into the pathogenesis of AMD. Further studies are warranted to 

investigate the role of lipid metabolism in drusen formation and AMD development in the 

early and intermediate stages, and the utility of lipid pathways for therapeutic treatment in 

preventing AMD. 
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Chapter 7A. Predicting the Future of Predicting the Future: Pressing 
Questions in the Genetic Risk Profiling of Glaucoma 

Glaucoma is the world’s leading cause of irreversible blindness. Primary open angle 

glaucoma (POAG) is typically asymptomatic early in the disease process, and unfortunately 

many are diagnosed too late to prevent vision loss. Genome wide association studies, which 

evaluate the association between genetic variants and phenotype across the genome, have 

mapped many genes for POAG. As well as uncovering new biology, genetic information can 

be combined into a polygenic risk score (PRS), which aggregates an individual’s disease 

risk over many genetic variants. In this non-systematic review performed from June 21 2019 

to October 1 2020, we address a series of questions to explain the challenges and 

opportunities in translating recent genetic discoveries in POAG. We summarize what is 

known about POAG genetics and how its endophenotypes, such as intraocular pressure or 

cup-disc ratio, can help with prediction. We discuss the sample sizes available, and how 

increases in the future may have an effect on the utility of prediction approaches. We explore 

particular scenarios such as the use of PRS in risk stratification and applications for 

individuals who are particularly high-risk for POAG as a result of them carrying both a high 

penetrance mutation and an unfavourable PRS. Finally, we discuss the issue of equity in 

applying these tests and the prospects for prediction for people from various ancestry 

groups. The cost-effectiveness evaluation of glaucoma PRS in direct-to-consumer genetic 

testing and across different ancestry groups is warranted in future research. In conclusion, 

advances in glaucoma genetics have opened the door for risk stratification based on genetic 

risk predictions. The PRS approach has shown good promise in predicting who will be at 

highest risk of POAG, which could improve outcomes if these predictions can be acted upon 

to result in improved clinical outcomes.  
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7A.1 Introduction 

Glaucoma, the world’s leading cause of irreversible blindness, is a heterogeneous group of 

diseases characterized by progressive degeneration of retinal ganglion cells (RGC), thinning 

of the retinal nerve fiber layer (RNFL), and excavation of the optic disc.90,91,411 This article 

will focus on the most common form of glaucoma, primary open angle glaucoma 

(POAG).92,93 The global prevalence of glaucoma in the population 40 years or older is 3.54%, 

and the prevalence of POAG is approximately 3.05%.94,95 The prevalence of glaucoma 

varies across the world and is highest in Africa ancestries (4.20%)92,93. POAG accounts for 

the vast majority of glaucoma cases of African and European ancestry and approximately 

half of Asians with the disease.94,186 

 

The biological mechanisms underlying POAG are not well understood and the risk factors 

contributing to its progression have not been fully characterized.411 Like other complex 

(multifactorial) diseases, both genetic and environmental factors play an important role in 

the development and progression of POAG.103,104 Elevated intraocular pressure (IOP) is 

currently the sole modifiable risk factor for POAG. Given higher IOP confers greater risk for 

POAG, high-tension glaucoma (HTG) is a commonly used subcategory; HTG is typically 

defined as IOP > 21 mmHg, although the specific threshold is somewhat arbitrary.186 POAG 

can develop and progress despite a IOP recordings in the “normal” range, normal-tension 

glaucoma (NTG).412,413 Conversely, not all people with elevated IOP develop POAG. Apart 

from IOP, vertical cup-to-disc ratio (VCDR) is another key endophenotype of POAG. Larger 

VCDR, a sign of glaucomatous optic cupping and visual field loss, is generally used to define 

POAG in population-based prevalence surveys.93 

 

Genetic factors play an important role in glaucoma.103,104 During the past few decades, 

genetic linkage analysis has identified genes such as myocilin (MYOC), OPTN and 

TBK1.107–109 Pathogenic variants in MYOC account for approximately 2-4% of POAG 

cases.109,110,116 The p.Gln368Ter (rs74315329) variant is the most common MYOC variant 

amongst populations of European ancestry.107,111,112 MYOC p.Gln368Ter carriers are 

generally diagnosed earlier than other cases and have elevated IOP.43,113,114 OPTN or TBK1 

variant carriers typically manifest with NTG.414,415 

 

The pace of gene discoveries for glaucoma accelerated during the past decade via genome-
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wide association studies (GWAS), a design to detect associations between single nucleotide 

polymorphisms (SNPs) and complex traits genome-wide rather than via a gene-by-gene 

candidate approach.6,8 Investigations into the genetics of POAG will improve our 

understanding of the allelic architecture, aid in molecular fine-mapping, and improve risk 

prediction and genetic screening for POAG.  

 

Polygenic risk scores (PRS), also known as genetic risk scores or allele scores, are profiles 

based on aggregating multiple risk alleles and their effect sizes.24,25 Complex traits and 

diseases, such as glaucoma, typically have a polygenic basis.20,21 While the biology 

mechanisms of the discovered genes are largely unknown, this does not preclude their use 

in prediction. Previous studies have shown that using genome-wide markers can improve 

predictions,27 and PRS are a promising tool for risk stratification, genetic screening, and the 

development of risk management strategies.29–32,34 An illustrative schematic diagram to 

identify individuals at high-risk using polygenic risk score is shown in Figure 1. In the review, 

we address a series of pertinent questions, providing an overview of recent advances of 

genetics in our understanding of both the risk factors for glaucoma (IOP, VCDR), as well as 

the disease itself. We also discuss what the prospects are for improving upon recently 

reported glaucoma genetic risk predictions.35 

 

 

 
Figure 1. Illustrative diagram of identifying individuals at high-risk using polygenic 
risk score.  
A simulation dataset was created with 100,000 individuals, with 3% of them having glaucoma (N = 3,000, in 

line with the glaucoma prevalence). A standardized glaucoma polygenic risk score was simulated for both 
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glaucoma cases and controls, and the PRS for glaucoma cases are on average 0.5 standard deviation higher 

than controls. Panel A shows the simulated density distribution of PRS for glaucoma cases and controls. The 

dashed vertical line is the cut-off point for individuals at the top 10% PRS. The dotted vertical line is the cut-off 

point for individuals at the top 3% PRS. These cut-off points could be potential thresholds to define individuals 

at high risk. Panel B shows the odds ratio for PRS split into 10 groups, with the first group set as the baseline. 
Panel C is similar to B, but with 33 groups. These figures give an illustration of how individuals can be stratified 

into high-risk or low-risk groups using a PRS. 
 

7A.2 What is known about the genetics of glaucoma and its 
endophenotypes IOP and VCDR? 

Studies have provided evidence for the importance of a genetic component in glaucoma. In 

the general population, participants with a first degree relative with glaucoma are at almost 

10 times higher risk of glaucoma.105,416,417 Heritability is a population parameter to describe 

the relative proportion of genetic and environmental factors in trait variation.418 A recent 

large-scale study, using reconstructed family data, estimated the heritability of glaucoma to 

be 0.7.106  The availability of large biobanks, such as UK Biobank (UKB), has dramatically 

accelerated the gene discoveries for glaucoma.125,126,130 Nearly 100 genes are associated 

with POAG.35,118–126 However, these genes only account for a small fraction of the disease 

heritability35,125,126 and larger studies are warranted. 

 

IOP and VCDR are key endophenotypes of glaucoma. Twin studies have estimated the 

heritability of IOP to range from 0.35 to 0.67.193 Subsequent GWASs allowed estimation of 

array-based heritability - this measures the degree to which common variants on genotyping 

arrays explain trait variation. Since only common (and not rare) variants are included, the 

array-based heritability provides a lower bound on the overall heritability. The array-based 

heritability for IOP has been estimated to be 16% in UK Biobank participants.126 However, 

the true value is likely higher, given there is substantial measurement error if only one IOP 

measurement is taken (e.g. the left eye IOP only explains 40% of the variance in right eye 

IOP in UK Biobank, with much of the remaining 60% likely due to measurement error). 

Recent gene discovery efforts using GWAS have identified more than 100 genes associated 

with IOP levels.125,126,131,133 Collectively, these IOP genes explained 9% to 17% (variation is 

due chiefly to measurement error in different studies and to age specific effects) of the 

variance of IOP levels.125  
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For VCDR, a previous study from the International Glaucoma Genetic Consortium (IGGC) 

identified nearly 30 loci associated VCDR, with a SNP-based heritability estimate of 0.31.133 

Our recent study in UKB tripled the sample size and identified 76 independent SNPs, 

explaining 6% of the variance of VCDR.35  

 

7A.3 To what extent will glaucoma endophenotypes improve risk 
prediction for glaucoma? 

Our recent study has demonstrated that IOP and glaucoma have a large shared genetic 

component, with a genetic correlation of 0.71.126 We also found a strong genetic correlation 

between VCDR and glaucoma (genetic correlation 0.5).35 Leveraging the high genetic 

correlation between glaucoma and its endophenotypes, GWASs of IOP and VCDR can 

uncover novel glaucoma genes and pathways, and improve the prediction of POAG.419,420 

A previous study found 101 genome-wide significant IOP SNPs, 53 of which affected 

glaucoma.126 

 

Recent studies have shown that multi-trait GWAS, a generalized meta-analysis method to 

incorporate genetic correlated traits, can improve power for identifying novel genes and 

improve the accuracy of genetic risk prediction.53 With the high genetic correlation between 

POAG and its endophenotypes (IOP and VCDR), the multi-trait GWAS method boosts 

power to uncover POAG genes and improve genetic predictions. Our study modeling 

glaucoma and IOP/VCDR data in a multi-trait GWAS approach increased the effective 

sample size for glaucoma 2.6 fold, and doubled the variance explained (variance explained 

6% by UKB glaucoma alone to 13% by multi-trait GWAS approach).35 This multi-trait 

approach combined ~8000 glaucoma cases, ~119,000 controls, ~130,000 individuals with 

IOP measurements and ~100,000 individuals with VCDR measurements. Assuming the 

contributions of IOP and VCDR contribute to the effective sample size in proportion to the 

estimated genetic correlation with POAG (genetic correlations 0.7 and 0.5, respectively), we 

estimate that approximately 4 IOP samples or 7 VCDR samples contribute the same power 

as one sample in glaucoma GWAS (assuming a 1:1 ratio of case and control). For example, 

100 glaucoma cases plus 100 controls have equivalent power to 800 individuals with IOP 

measured or 1,400 individuals with VCDR measured. Since glaucoma is relatively rare in 

the general population, biobanks will contribute more to glaucoma gene mapping efforts if 
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they have IOP or VCDR measured on their (largely glaucoma free) participants, than if such 

biobanks merely identify glaucoma cases/controls. Naturally, if both case-control and 

endophenotype data are available for use in a multi-trait model, this will maximize power. 

 

7A.4 How many glaucoma samples are required for “good” prediction of 
risk? 

Leveraging large datasets of glaucoma, IOP and VCDR, our recent study has shown that a 

PRS derived from multi-trait analysis provided additional predictive ability beyond traditional 

glaucoma risk factors, with a significant change in the AUC (from 0.73 to 0.80). In the general 

population, participants in the top PRS decile reach an absolute risk (3%) for glaucoma 10 

years earlier than the bottom decile and are at 15-fold higher risk of developing advanced 

glaucoma. These findings demonstrate the prospect of PRS in identifying individuals in high 

risk groups, which could be an effective tool for risk stratification. 

 

To predict what is expected in the future from GWAS on glaucoma and its endophenotypes 

given larger sample sizes, we applied a novel statistical method, “GENetic Effect-Size 

distribution Inference from Summary-level data” (GENESIS), to model the effect size 

distribution of common variants, characterize the polygenic architecture of the traits, and 

project the likely improvements in variance explained by future GWASs.40 The detailed 

descriptions of the modelling data and methods are in the supplement. Based on the 

modelling, with a sample size of 40,000 (equivalent to 20,000 cases, 20,000 controls), the 

projected number of underlying susceptibility SNPs is 27, which are predicted to explain 

15% of glaucoma phenotypic variation. Doubling the sample size to 80,000 (equivalent to 

40,000 cases, 40,000 controls) is predicted to identify 90 susceptibility SNPs and explain 

23% of glaucoma variation. From the GENESIS analysis, the predicted best AUC for the 

PRS alone is 0.59, 0.62, 0.67 for sample sizes 20,000, 40,0000, and 80,000, respectively.  

We then projected the polygenic architecture of glaucoma endophenotypes (IOP and VCDR) 

using GENESIS. For IOP, with extant sample sizes of ~100,000, the projected number of 

underlying susceptibility SNPs is 67, which explains 3.5% of IOP variation. When doubling 

the sample size to 200,000, the projected number of underlying susceptibility SNPs is 200, 

which are predicted to explain 5.5% of IOP variation. Quadrupling the IOP GWAS sample 

size to 400,000 would identify approximately 655 susceptibility SNPs and explain 9.3% of 
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IOP variation. The explained variance of IOP measurements would depend on factors, such 

as diurnal variation, age and measurement errors.   

 

To characterize the polygenic architecture of VCDR, we applied GENESIS to UKB VCDR 

GWAS summary statistics with a sample size of ~67,000. The projected number of 

underlying susceptibility SNPs is 64, which explains 5.5% of VCDR variation. When the 

sample size is 100,000, the projected number of underlying susceptibility SNPs is 101, which 

explains 6.5% of VCDR variation. A VCDR GWAS of 200,000 samples would identify 272 

susceptibility SNPs and explain 9.2% of VCDR variation. For both IOP and VCDR, by 

combining these traits with glaucoma in a multitrait model, there is likely to be excellent 

scope to reveal novel glaucoma genes and to improve glaucoma risk predictions. 

 

 
Figure 2. The projection of the number of discovered SNPs and genetic variance 
explained for glaucoma, IOP, and VCDR.  
The X-axis is the sample size of GWAS summary statistics. For glaucoma, the sample size equals the total 
number of N cases and N controls, assuming a 1:1 ratio.  Diamond plus symbols show the projection at different 

sample sizes (roughly current sample size, double, and quadruple). In Panel A, the Y-axis is the projected 
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number of independent SNVs. In panel B, the Y-axis is the genetic variance explained (%), which is equal to 

phenotypic variance explained multiply by heritability.   
 

7A.5 What are the prospects for larger sample sizes? What is the limit in 
terms of improvement? 

Sample sizes for glaucoma GWAS have steadily increased over the last decade, culminating 

in the International Glaucoma Genetics Consortium (IGGC) glaucoma meta-analysis.312 The 

IGGC meta-analysis comprised 34,179 glaucoma cases and 349,321 controls. The primary 

determinant of power to identify new loci is the number of cases; the number of array 

genotyped glaucoma cases worldwide exceeds over 75,000 currently - for example 

23andMe have data on 43,254 participants with self-reported POAG cases. Biobanks and 

other studies focusing on glaucoma are likely to take the number of cases over 100,000 in 

the not too distant future although the challenge will be efficiently collating these for meta-

analysis. 

 

As noted above, in addition to case-control samples, data on IOP and VCDR will also be 

important in increasing discovery power. The largest IOP GWAS comprised almost 140,000 

individuals,125 although there are >200,000 individuals with IOP and array genotypes 

worldwide - for example the GERA cohort129 comprises almost 70,000 individuals (non-

overlapping with Khawaja et al’s study125). For VCDR, the largest published GWAS 

comprises >90,000 individuals35; increasing this sample size is more difficult. Nonetheless, 

based on ongoing studies across the world, it is anticipated that 100,000 individuals will be 

exceeded in the near future.  

 

For both glaucoma and the endophenotypes IOP and VCDR, increasing in the number of 

individuals who are phenotyped and genotyped is likely to yield improvements in prediction 

accuracy. For example, the predicted AUCs for glaucoma for the 34,000 and 75,000 cases 

scenario (assuming twice as many controls available) are 0.68 and 0.73, respectively. 

75,000 glaucoma cases, combined in a multitrait analysis with N= 200,000 IOP and 

N=100,000 VCDR datasets (the endophenotypes add the equivalent of approximately 

additional 64,000 case samples) are expected to increase the AUC to 0.75. If hypothetically, 

the number of samples was doubled over the coming years, this would increase the AUC 

further, with the AUC beginning to plateau beyond this point.  
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In our modelling, AUC values are for a baseline model without age and sex included - in 

practice if age and sex are included, AUCs increase by 0.05-0.1 units.35 Nonetheless, since 

glaucoma is not 100% heritable, stochastic environmental factors will prevent the AUC for a 

glaucoma PRS from exceeding 0.9, meaning that it will never be possible to develop genetic 

risk predictions which are diagnostic for individual people. Rather, the power of these PRSs 

in glaucoma lies in risk stratification - whilst risk estimates for individual people will be noisy 

and inaccurate, as a group those in high risk individuals are at greatly increased risk and will 

benefit from early screening and interventions.  

 

 
Figure 3. The projection of prediction value of polygenic risk score for glaucoma.  
The X-axis is the sample size for glaucoma. The sample size equals the total number of N cases and N 
controls, assuming a 1:1 ratio. We note here that the AUC values are all for a baseline model without age 

included - in practice if age is included, all of these AUCs increase by between 0.05 and 0.1 units. Diamond 

plus symbols show the projection at different sample sizes (roughly current sample size, double, and 

quadruple).  
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7A.6 If IOP based screening is not currently recommended - what are the 
prospects for PRS based screening? 

Raised IOP is the principal modifiable risk factor for glaucoma. In the past, IOP has been 

postulated as a screening tool for glaucoma.92,93 However, IOP-based population screening 

is not currently recommended. Chan and colleagues using a community based cross-

sectional study of a UK population showed 76% of POAG cases have IOP below 21 mmHg, 

and no specific IOP threshold can provide adequately sensitivity and specificity values for 

glaucoma.186 Although there is no established evidence-based population screening for 

glaucoma, target screening of individuals at-risk may be cost-effective, i.e. sub-groups of 

older adults.192  

 

Using a multi-trait PRS, our recent study considered a target population screening scenario 

in the key 50–60 age bracket, and showed the PRS can identify high-risk individuals.35 The 

PRS can also improve the predictive ability beyond traditional risk factors (age, sex and 

family history). Participants in the top decile PRS were affected 10 years earlier than people 

in the bottom PRS decile - the age at which 3% prevalence reached was 59 and 69 in these 

respective groups. As shown in Figures 2 and 3, increased sample sizes in the foreseeable 

future will translate directly to improved prediction of glaucoma risk and in turn this will 

increase the degree of stratification by age that is possible. Since the PRS contains both 

SNPs which likely act via changes to IOP as well as SNPs which likely act via the nerve 

head (as measured by variation in VCDR), a PRS based approach is potentially more 

informative than an approach based solely on IOP. In practice, the utility of a genetic based 

approach will depend on both the accuracy of the PRS based predictions as well as more 

general health economic considerations.421 

 

7A.7 What proportion of the population are at “high penetrance” risk (e.g. 
equivalent risk to Myocilin gene Gln368Ter variant)? 

Traditionally, clinical genetic testing has primarily focused on identifying carriers of rare 

monogenic mutations conferring several fold increased disease risk (e.g. high penetrance 

disease causing variants).42 For instance, the rare BRCA1 and BRCA2 mutation carriers are 

used in genetic screening for breast and ovarian cancers.422,423 The ascertainment of 

monogenic mutations can be used in cascade genetic testing for carriers and their family 
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members and identifying at-risk unaffected relatives for early monitoring,181 and has shown 

clear benefit in clinical care.421 In European ancestry populations, the Myocilin gene 

Gln368Ter variant is by far the most common high penetrance glaucoma risk variant. 

Gln368Ter variant carriers have four fold increased risk of non-advanced glaucoma and 

have 12 fold increased risk for advanced glaucoma.43 However, the proportion of Gln368Ter 

variant carriers is low (1 in 786 individuals, 0.13%) and the majority of glaucoma cases are 

not Gln368Ter carriers. In our recent study, the multi-trait PRS showed effective risk 

stratification in a case-control advanced glaucoma sample. Individuals in the top 1% of the 

PRS had a 8.5 fold higher risk relative to the remaining 99%, with even better discrimination 

value for high-tension glaucoma. Since this elevation of risk is similar to that for Gln368Ter 

variant carriers, currently the PRS based approach identifies 7 times more individuals at 

high risk than an approach screening using Gln368Ter variants alone.117 Hence as shown 

in other diseases33, in glaucoma identifying individuals with risk equivalent to monogenic 

mutations can have clinical utility for screening. As sample sizes increase and the PRS 

becomes more accurate, the proportion of individuals at “high penetrance” like risk will 

steadily increase. In addition, the two POAG subtypes (HTG and NTG) may have different 

genetic bases. The multi-trait PRS had a higher predictive value for HTG subtype - this may 

be due to 1) a larger proportion of glaucoma cases are HTG which were used to derive the 

PRS; 2) large IOP GWAS in the multi-trait PRS model was more predictive of HTG. 

However, currently there are no NTG-specific large-scale GWAS available to train a NTG-

specific PRS model. In the future research, with large-scale well-defined glaucoma GWAS, 

the genetic heterogeneity of the two different glaucoma subtypes should be evaluated.        

 

7A.8 What are the prospects for prediction in different ancestry groups? 

During the past decades, genetic studies have predominantly included only European 

participants. The predictive accuracy of European ancestry derived PRS has been shown 

to be lower in non-European ancestries (e.g. Asian and African).424,425 The different linkage 

disequilibrium patterns, allele frequencies, and genetic architecture may affect the 

transferability of PRS to people of different ancestries.424 Nonetheless we showed a 

European ancestry based glaucoma PRS led to a statistically significant improvement in 

prediction accuracy in people of South Asian ancestry35.  
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The prevalence of glaucoma is dramatically higher in individuals of African ancestry. A 

recent study identified the first glaucoma risk locus (APBB2 gene) in individuals of African 

ancestry.426 Given APBB2 was not significant in European or Asian ancestry GWAS, one 

may be tempted to conclude there are genetic differences between ancestries. However, 

the key APBB2 variants are monomorphic in non-African ancestry populations, making it 

difficult to directly assess the contribution of this locus. When the IGGC cross-ancestry meta-

analysis considered the overlap on a genome-wide basis, most glaucoma loci showed a 

consistent effect across people of European, Asian and African ancestries.427 It seems likely 

therefore that conducting large scale GWAS from diverse human populations would improve 

PRS prediction accuracy and contribute to the transferability of PRS across different 

ancestries. In the near term, since the majority of GWAS to date have been conducted in 

European or Asian ancestries, prediction accuracy is likely to be highest in these 

populations. In the longer term, incorporating a wider range of ancestries in future GWASs 

would improve prediction performance, particularly in African ancestries who are affected by 

glaucoma at high rates. Increasing the diversity of genomic research is also important to 

ensure health equity, and clinical use of PRS may exacerbate health disparities.428 Four 

aspects have been proposed429 to ensure everyone can benefit from genomics research, 

including increasing the diversity of populations in genetic studies, creating more diverse 

reference genomes, training more diverse scientists, and developing better methods for 

predicting across diverse ethnic groups and for separating gene and environment effects. 

These strategies would improve the generalizability of PRS to different ethnic groups and 

help health equity.   

 

7A.9 Limitations of genetic risk profiling of glaucoma. 

There are several limitations of PRS for glaucoma. First of all, glaucoma PRS studies to 

date have occurred in research settings and the cost-effectiveness of PRS based genetic 

screening program is warranted before adopting genetic testing in the general population. 

Secondly, particularly, in the direct-to-consumer setting, more research is needed on 

effective communication of PRS results to participants so that early and effective 

intervention can take place to prevent glaucoma. Finally, genetic studies to date 

predominantly include only European-descent samples and there is an urgent need to 

collect samples from different ethnic groups to increase diversity and reduce health 
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disparities. Recent initiatives to include diverse populations in genomics research include 

TOPMed and H3Africa consortia.430,431  

 

7A.10 Conclusions 

Recent advances in glaucoma genetics have mapped many genes implicated in disease 

pathogenesis and opened the door for risk stratification based on genetic risk predictions. 

Given the relatively strong predictive power of a POAG PRS and the increasing number of 

people with genomic data in clinical settings (over 60 million by 2025)432,433, glaucoma 

genetic prediction is likely to steadily improve. There is good potential for the PRS based 

genetic screening program in glaucoma, although cost-effectiveness will need to be formally 

evaluated. Prospective studies validating the clinical utility for PRS profiling in POAG are 

also clearly needed. The next steps for implementing these advances into improvements in 

public health will depend on randomized trials to demonstrate efficacy in real world settings 

as well as health economics evaluations to guide practical implementation. 
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Chapter 7B. General discussion 

The availability of large scale biobanks with deep phenotyping and genomic data130,434 has 

given researchers many new opportunities to answer scientific questions about disease 

mechanisms, prevention, diagnosis, and treatment, which may eventually revolutionize 

healthcare.434 One milestone is the release of approximately half a million of individuals with 

deep phenotyping and genomic data from the UK Biobank (UKB) resource in 2017. 

 

In the work shown in this thesis, by leveraging large scale biobanks and data from 

international consortia I have identified many new genes associated with eye diseases and 

traits (Chapters 3, 4, and 5), revealing their polygenic basis. A summary of the key findings 

and implications from this thesis is shown in Table 1. As the GWAS sample size increases, 

more genetic discoveries and better insights into the complex genetic architecture of eye 

diseases will be revealed in the future.40 One important use for these genetic findings is to 

develop a polygenic risk score for disease risk prediction. Chapter 3 demonstrates how 

glaucoma PRS is predictive of glaucoma risk, and enables risk stratification for individuals 

in high risk and low risk groups. The PRS tool is unlikely to be a diagnostic model, however, 

it can identify a subgroup of individuals at higher risk, with equivalent risk to high penetrate 

“rare mutations” (e.g. Myocilin gene Gln368Ter variant, as presented in Chapter 2), which 

has been well studied in clinical genetic testing. The prediction accuracy will increase 

steadily in the near future when more samples are available as projected in Chapter 7A. The 

accumulation of large scale genetic data also provides new opportunities to investigate 

causal inference based on genetic instruments. In Chapter 6, Mendelian randomization 

analyses were performed to investigate potential causal associations between circulating 

inflammatory and lipid biomarkers and the risk of AMD. These findings provide new insights 

into the biological mechanisms of AMD.  
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Table 1. Summary of key findings and implications from each chapter. 

Chapters Key findings & implications 

1. Introduction a. The concept of complex traits was reviewed. 
b. Two key statistical genetics approaches were introduced 

(polygenic risk score and Mendelian randomization). 
c. General induction of two important eye diseases: glaucoma and 

age-related macular degeneration.  

2. Myocilin gene Gln368Ter 
variant penetrance and 
association with glaucoma in 
population-based and registry-
based studies 

a. Approximately 50% of MYOC p.Gln368Ter carriers older than 
65 years had glaucoma or ocular hypertension in UK Biobank, 
with an even higher prevalence in Australian registry-based 
studies.  

b. This study provides evidence to support early screening and 
monitoring of p.Gln368Ter variant carriers. 

3. Multitrait analysis of 
glaucoma identifies new risk 
loci and enables polygenic 
prediction of disease 
susceptibility and progression 

a. From multi-trait analysis, 114 statistically independent SNPs 
were identified for glaucoma, 49 of them had not previously 
been associated with glaucoma. 

b. Multi-trait GWAS derived glaucoma polygenic risk score has 
good predictive ability across a variety of population and clinical 
datasets, including glaucoma status, age of glaucoma 
diagnosis, risk stratification in general population and persons 
carrying MYOC p.Gln368Ter variant, glaucoma disease 
progression, and requirement of glaucoma surgery.  

c. The multi-trait glaucoma PRS will help the development of a 
personalized approach for earlier treatment of individuals at a 
high-risk group, with less intensive monitoring and treatment for 
lower-risk groups. 

4A. Genome-wide association 
analysis of 95,549 individuals 
identifies novel loci and genes 
influencing optic disc 
morphology 
 
4B. Automated AI labelling of 
optic nerve head enables new 
insights into cross-ancestry 
glaucoma risk and genetic 
discovery in >280,000 images 
from UKB and CLSA 

a. Deep learning models were trained from optic nerve head 
photographs, which enables automated labelling of vertical disc 
diameter and VCDR for further cross-ancestry epidemiological 
studies and genetic analysis.  

b. The distributions of VCDR, vertical disc diameter, intraocular 
pressure, as well as glaucoma risk were systematically 
evaluated across different ancestries, which provide a possible 
explanation for the high prevalence of normal tension glaucoma 
in the East Asian population.  

c. AI-based gradings dramatically increased SNP-based 
heritability, and identified more than 200 loci for both VCDR and 
disc diameter (doubled the number of loci from previous 
studies), and many of the novel VCDR loci also conferring risk 
for glaucoma. 

d. AI approaches provide accurate phenotyping and dramatically 
accelerate the pace of genetic discoveries, which give new 
insights into the pathogenesis of glaucomatous optic 
neuropathy.  

5. Genome-wide meta-analysis 
identifies novel loci associated 
with age-related macular 
degeneration 

a. From genome wide meta-analysis, 69 statistically independent 
SNPs were identified for AMD, 12 of them had not previously 
been associated with AMD. 

b. From further functional annotation, most of the novel genes are 
expressed in the retina and may be involved in pathways of 
AMD pathogenesis.  

6A. Using Mendelian 
randomization to evaluate the 

a. Elevated circulating C-reactive protein levels are associated 
with increased risk of AMD.  
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causal relationship between 
serum C-reactive protein levels 
and age-related macular 
degeneration 
 
6B. The effects of eight serum 
lipid biomarkers on age-related 
macular degeneration risk: a 
Mendelian randomization study 

b. Elevated circulating ApoA1 and HDL-C levels are associated 
with the risk of all AMD subtypes, whereas ApoB, LDL-C, CHOL, 
and non-HDL-C levels are particularly associated with 
decreased risk of intermediate and GA AMD. 

c. This study supports the important role of the inflammatory 
biomarker CRP and lipid metabolism in drusen formation and 
AMD development, suggesting the potential utility of disease 
prediction and targeting CRP and lipid pathways for therapeutic 
treatment in preventing AMD. 

7A. Predicting the future of 
genetic risk profiling of 
glaucoma: a narrative review 
 
7B. General discussion 

a. A series of pertinent questions in the genetic risk profiling of 
glaucoma were reviewed. 

b. The genetic risk prediction performance for glaucoma was 
projected when larger sample size is available. 

c. The key findings from the work in this thesis were summarized, 
the challenges of fine-mapping causal variants or genes and 
application of polygenic risk score were discussed.  

 

 

In the digital era, large biobanks and national registries with massive data have become 

available, such as UK Biobank130, China Kadoorie biobank435, BioBank Japan436, All of 

Us437, TOPMed Programme438, FinnGen study439, H3Africa440, Million Veteran program441, 

Estonian Biobank442, and Canadian Longitudinal Study on Aging310. Whilst some of these 

biobank studies (such as UK Biobank) have already delivered many new findings, other 

studies are only beginning to reach their potential. Traits or variables from wearable-

devices443, new knowledge from deep learning (e.g. medical images)444, longitudinal follow-

ups, omics data from different levels (genomic, transcriptomic, epigenetic, proteomic, and 

metabolomic data, etc.)445,446 will further expand the size and depth of the data. Integrating 

large amounts of data resources will uncover more biological mechanisms and improve 

medical care. For instance, a deep learning model was used to extract knowledge from 

retinal fundus images that can predict cardiovascular risk factors.444 Another study showed 

that retinal fundus images coupled with genetic data can predict AMD progression.287 

Artificial intelligence (AI) algorithms are revolutionizing the field of medical images for 

disease screening, prevention, diagnosis, and treatment.286,287,314,447 In Chapter 4B, we have 

shown that AI models offer the opportunity to conduct large-scale genetic studies based on 

the automated highly accurate imaging-derived phenotypes, and to identify novel genes 

associated with glaucoma risk. 

 

Despite the remarkably large number of GWAS loci identified to date, it still remains a 

challenge to identify causal variants or genes, and to interpret the underlying biological 

processes.448 Fine-mapping methods based on statistical genetic approaches, integrating 
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large-scale omics data, and advance of novel biotechnologies such as CRISPR (Clustered 

Regularly Interspaced Short Palindromic Repeats) technology449 have provided many new 

opportunities. 

 

7B.1  Fine-mapping of causal variants or genes 
In recent years, many new statistical fine-mapping methods and biotechnology techniques 

have been developed and have been applied to uncover potential causal variants or genes. 

Traditionally, SNPs with P values less than a particular threshold (e.g. P < 5 × 10-8 after 

accounting for multiple testing) are regions of interest. However, neighbouring SNPs may 

pass the genome-wide significant level because of linkage disequilibrium (LD) with the index 

SNP. Clumping or stepwise conditional analysis methods have been developed to prioritize 

lead SNPs accounting for LD blocks.212 However, the top SNPs may be just surrogates for 

the underlying causal variants, and more importantly, causal variants are not necessary to 

be SNPs with the smallest P value in a region.450,451 Factors such as multiple causal SNPs 

in a region, local LD structure, sample size, SNP effect sizes, and whether causal variants 

can be genotyped or imputed can further affect the accuracy and power of fine-mapping.451 

Various statistical fine-mapping approaches have been adopted to prioritize potential causal 

variants or genes, such as Bayesian based approaches (e.g. CAVIAR,452 PAINTOR,453 

FINEMAP,454 and SuSiE455), leveraging functional annotations,456,457 integrating GWAS with 

gene expression data (e.g. PrediXcan, FUSION, SMR, FOCUS),243,320,458,459 and trans-

ethnic analysis.460 For instance, a breast cancer GWAS has identified variants among more 

than 150 regions, however, fewer than 20 regions have been well studied.461 A recent fine-

mapping study has been conducted based on stepwise regression models and a Bayesian 

approach (PAINTOR analysis to leverage genetic associations, LD structure, and genomic 

features), with further epigenetic expression and chromatin conformation data to infer 191 

likely target genes.461  Studies have also shown trans-ethnic diverse populations can 

increase power to identify novel loci and improve fine-mapping resolution.460 Compared with 

European and Asian populations, African ancestry populations have low linkage 

disequilibrium structure and high genetic heterogeneity (the proposed “Out of Africa” 

model).462 Simulation and empirical studies have also demonstrated that the inclusion of 

African samples leads to improvement in gene discoveries and fine-mapping.460,463 Different 

approaches have been developed to perform trans-ethnic meta-analysis. For instance, in 
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the traditional fixed effects model (FE), the effect sizes for each SNP are assumed to be 

homogeneous across multiple studies (or multiple ancestry groups), and an inverse-

variance-weighted method is used to calculate the meta effect sizes. However, because of 

the genetic heterogeneity between different ancestry groups, the effect sizes across different 

studies are unlikely to be homogeneous, and the random-effects model (RE) allows the 

effect sizes to be heterogeneous across studies, following a normal distribution. The 

limitation of this classical random-effects model is that accounting for additional variability 

leads to a conservative estimation and loses power in trans-ethnic meta-analysis. Han and 

Eskin have proposed two new random-effects models, 1) Han and Eskin's random effects 

model (RE-HE), and 2) binary effects model (BE), both of which are powerful and account 

for heterogeneity,464,465 and have shown a comparable performance with another Bayesian-

based approach (MANTRA).466,467 However, statistical fine-mapping models alone are 

unlikely to determine causal variants or genes for all loci. The underlying biological 

mechanisms for hundreds of disease associated loci remain to be explored.468 

 

With the advance of new biotechnologies, integrating large-scale population-based omics 

data is another promising angle to systematically identify druggable targets,469 harnessing 

omics such as transcriptome,320 methylome,470 proteome,471 and metabolome.472 For 

instance, circulating proteins and metabolites represent intermediate phenotypes for 

disease outcomes, as well as one major source of drug targets.469 A recent phenome-wide 

Mendelian randomization study has comprehensively evaluated potential causal effects of 

approximately 1,000 plasma proteins on 225 human phenotypes based on a two sample 

MR framework and colocalization analysis, and has provided valuable information in 

validating and prioritizing therapeutic targets from the pQTL MR analysis.471 Another 

burgeoning and rapid developing field is single-cell RNA-sequencing (scRNA-seq)473, which 

enables the quantification of gene expression levels at the single cell level.  

 

Functional experiments can provide further insights into the identification of causal variants 

and validation of drug targets. CRISPR technology, a revolutionary discovery that has been 

awarded the 2020 Nobel Prize in Chemistry, has shown a promising future for functional 

validation. For instance, CRISPR-mediated gene editing approach has been applied to 

perturb gene functions  (e.g. CRISPR activation and interference [CRISPRa/i])474,475 that 

prioritized from schizophrenia GWAS risk variants, and the downstream gene expressions 

were evaluated in different neuronal cell types based on the human induced pluripotent stem 
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cell (hiPSC) approach.476 The advancing of CRISPR-based genome-targeting 

technologies,477 including base editing, gene editing, epigenome editing, chromatin imaging, 

and chromatin topology manipulations, also enables large-scale functional screenings that 

have shown exciting application in genetic screens, and will pave the way for a better 

understanding of disease molecular mechanisms and therapeutic targets identification.478,479 

 

With the burgeoning of PRS from large-scale genetic data, how to translate PRS into clinical 

care remains to be answered. 

 

7B.2  Genetic risk predictions in action 
7B.2.1  Develop a polygenic risk score  
Even though the specific effects of most variants and genes remain unknown, aggregating 

many risk variants into a polygenic risk score has exhibited increasing utility and promising 

future in precision medicine in recent years. Detailed guidelines and reporting standards to 

perform polygenic risk score analysis have been presented.24,480,481 A 22-item Polygenic 

Risk Score Reporting Statement is recently published to provide recommendations for PRS 

studies, including study design, risk model development and evaluation, as well as reporting 

limitations and clinical implications.481 In general, a good PRS study should follow the best 

practices of both GWAS and risk prediction model studies, where genetic risk score is 

included as additional information on top of traditional epidemiological risk factors. Typically, 

the model development procedures and evaluation metrics are the same as epidemiological 

risk prediction models (e.g. the well-known Framingham Risk Score). One main advantage 

of polygenic risk prediction models is genetic information could be available from birth, and 

different polygenic risk scores can be developed based on the same genetic data (“all-in-

one”) weighted by their effect sizes for each specific disease, such as coronary heart 

disease, breast cancer, colorectal cancer, and glaucoma.      

 

7B.2.2 Cost-effectiveness evaluation of PRS   
The cost-effectiveness analysis (CEA) of genetic tests for some rare diseases has been 

well-studied,482 however, as far as I know, there are only several studies to evaluate the 

cost-effectiveness of PRS for common diseases. For colorectal cancer (CRC), a recent 

published study has demonstrated that a CRC screening based on PRS is unlikely to be 
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cost-effective compared with colonoscopy screening.483 However, it is expected to become 

cost-effective if the predictive AUC increased by 0.05 (beyond 0.65), or there was a 30% 

reduction in the price of polygenic testing, or a 5% increase in screening participation. With 

the availability of large-scale population genetic data (i.e. UK Biobank, 23andMe,484 and All 

of Us Research Program437) to boost the training sample size and to improve prediction 

accuracy of PRS, as well as the reduction in the cost of genetic testing, it is anticipated that 

PRS-based CRC screening will become cost-effective in the foreseeable future. Another 

modelling study for prostate cancer showed a polygenic risk-tailored screening programme 

can prevent 6.3% deaths from prostate cancer, as well as lead to one-third fewer 

overdiagnosis compared with current recommended age-based screening strategy (in men 

aged 55 to 69).485 Given the high heritability of some eye diseases (e.g. glaucoma), there is 

good potential to apply PRS-based population screening programs. However, currently 

there is no cost-effectiveness evaluation of glaucoma population screening based on 

polygenic risk score, even though glaucoma PRS has shown a relatively high predictive 

accuracy.35 In the future, before applying direct-to-consumer genetic tests for glaucoma and 

other complex diseases, high quality cost effectiveness studies are warranted to assess the 

utility and efficacy of PRS in population risk stratification and disease screening.  

 

7B.2.3 Application of PRS in clinical decision making 
To adopt PRS in clinical decision making, randomized clinical trials are needed to evaluate 

the efficiency of PRS for drug prescriptions and therapeutic responses. 63 A recent 

ODYSSEY OUTCOMES trial has demonstrated the benefits of PRS in guiding therapeutic 

decision making. 486 This study showed that the incidence of major adverse cardiovascular 

events (MACE) in the placebo arm was 17% and 11% for high and lower PRS groups, 

respectively. For participants in the high PRS group, alirocumab treatment can reduce the 

relative incidence of MACE by 37% compared with placebo arm, while in lower PRS group, 

alirocumab treatment only decreased MACE incidence by 13% compared with placebo arm. 

Further including baseline LDL-C levels with PRS to stratify participants into four subgroups 

(combinations of high vs lower PRS groups, LDL-C ≥ 100 mg/dL vs < 100 mg/dL), 

alirocumab treatment reached the highest relative MACE incidence reduction in participants 

with high PRS and LDL-C ≥ 100 mg/dL (HR = 0.5, P value = 0.015) compared to the placebo 

arm, and showed no evidence to reduce MACE incidence in participants with lower PRS 

and baseline LDL-C < 100 mg/dL (HR = 0.94, P value = 0.42) compared to placebo arm. In 
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the future, when PRS is widely available in clinical settings, incorporating and optimizing 

PRS-based therapeutic targeting in clinical pathways will be an important step towards 

precision medicine.  

 

7B.3 Conclusion 

In summary, the work in this thesis enhanced our understanding of the genetics in eye 

diseases and related quantitative traits. From large-scale genome-wide association studies, 

many novel genes were identified in this thesis, paving the way to uncover the underlying 

biological mechanisms. One important utility of genetic data is to develop a personalized 

disease risk prediction tool in aid of risk stratification, clinical screening, and therapeutic 

targeting. In my work, I have developed a glaucoma polygenic risk score and have 

comprehensively evaluated its predictive ability across a variety of clinical datasets and 

different populations. These discoveries will mark a great starting point upon which we can 

realise the clinical benefits in risk prediction, prevention, and treatment from genetic data, 

making it one of the exemplary fields for the success of translating genetic findings into 

clinical practise for many other complex traits and diseases. 
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