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Preface
Gain insight and practice with neural net architecture design to solve problems with 
artificial intelligence. Understand the concepts behind the most advanced networks 
in deep learning. Leverage Python language with Theano technology, to easily 
compute derivatives and minimize objective functions of your choice.

What this book covers
Chapter 1, Theano Basics, helps the reader to reader learn main concepts of Theano 
to write code that can compile on different hardware architectures and optimize 
automatically complex mathematical objective functions.

Chapter 2, Classifying Handwritten Digits with a Feedforward Network, will introduce 
a simple, well-known and historical example which has been the starting proof 
of superiority of deep learning algorithms. The initial problem was to recognize 
handwritten digits.

Chapter 3, Encoding word into Vector, one of the main challenge with neural nets is to 
connect the real world data to the input of a neural net, in particular for categorical 
and discrete data. This chapter presents an example on how to build an embedding 
space through training with Theano.

Such embeddings are very useful in machine translation, robotics, image captioning, 
and so on because they translate the real world data into arrays of vectors that can be 
processed by neural nets.

Chapter 4, Generating Text with a Recurrent Neural Net, introduces recurrency in neural 
nets with a simple example in practice, to generate text.
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Recurrent neural nets (RNN) are a popular topic in deep learning, enabling more 
possibilities for sequence prediction, sequence generation, machine translation, 
connected objects. Natural Language Processing (NLP) is a second field of interest 
that has driven the research for new machine learning techniques.

Chapter 5, Analyzing Sentiments with a Bidirectional LSTM, applies embeddings and 
recurrent layers to a new task of natural language processing, sentiment analysis.  
It acts as a kind of validation of prior chapters.

In the meantime, it demonstrates an alternative way to build neural nets on Theano, 
with a higher level library, Keras.

Chapter 6, Locating with Spatial Transformer Networks, applies recurrency to image,  
to read multiple digits on a page at once. This time, we take the opportunity to 
rewrite the classification network for handwritten digits images, and our recurrent 
models, with the help of Lasagne, a library of built-in modules for deep learning 
with Theano.

Lasagne library helps design neural networks for experimenting faster. With this 
help, we'll address object localization, a common computer vision challenge, with 
Spatial Transformer modules to improve our classification scores.

Chapter 7, Classifying Images with Residual Networks, classifies any type of images 
at the best accuracy. In the mean time, to build more complex nets with ease, we 
introduce a library based on Theano framework, Lasagne, with many already 
implemented components to help implement neural nets faster for Theano.

Chapter 8, Translating and Explaining through Encoding – decoding Networks, presents 
encoding-decoding techniques: applied to text, these techniques are heavily used 
in machine-translation and simple chatbots systems. Applied to images, they serve 
scene segmentations and object localization. Last, image captioning is a mixed, 
encoding images and decoding to texts.

This chapter goes one step further with a very popular high level library, Keras,  
that simplifies even more the development of neural nets with Theano.

Chapter 9, Selecting Relevant Inputs or Memories with the Mechanism of Attention, for 
solving more complicated tasks, the machine learning world has been looking for 
higher level of intelligence, inspired by nature: reasoning, attention and memory. 
In this chapter, the reader will discover the memory networks on the main purpose 
of artificial intelligence for natural language processing (NLP): the language 
understanding.
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Chapter 10, Predicting Times Sequence with Advanced RNN, time sequences are an 
important field where machine learning has been used heavily. This chapter  
will go for advanced techniques with Recurrent Neural Networks (RNN),  
to get state-of-art results.

Chapter 11, Learning from the Environment with Reinforcement, reinforcement learning 
is the vast area of machine learning, which consists in training an agent to behave in 
an environment (such as a video game) so as to optimize a quantity (maximizing the 
game score), by performing certain actions in the environment (pressing buttons on 
the controller) and observing what happens.

Reinforcement learning new paradigm opens a complete new path for designing 
algorithms and interactions between computers and real world.

Chapter 12, Learning Features with Unsupervised Generative Networks, unsupervised 
learning consists in new training algorithms that do not require the data to be labeled 
to be trained. These algorithms try to infer the hidden labels from the data, called 
the factors, and, for some of them, to generate new synthetic data.

Unsupervised training is very useful in many cases, either when no labeling exists, 
or when labeling the data with humans is too expensive, or lastly when the dataset 
is too small and feature engineering would overfit the data. In this last case, extra 
amounts of unlabeled data train better features as a basis for supervised learning.

Chapter 13, Extending Deep Learning with Theano, extends the set of possibilities in 
Deep Learning with Theano. It addresses the way to create new operators for the 
computation graph, either in Python for simplicity, or in C to overcome the Python 
overhead, either for the CPU or for the GPU. Also, introduces the basic concept of 
parallel programming for GPU. Lastly, we open the field of General Intelligence, 
based on the first skills developped in this book, to develop new skills, in a gradual 
way, to improve itself one step further. 

Why Theano? 
Investing time and developments on Theano is very valuable and to understand 
why, it is important to explain that Theano belongs to the best deep learning 
technologies and is also much more than a deep learning library. Three reasons  
make of Theano a good choice of investment:

• It has comparable performance with other numerical or deep  
learning libraries

• It comes in a rich Python ecosystem
• It enables you to  evaluate any function constraint by data, given a model,  

by leaving the freedom to compile a solution for any optimization problem
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Let us first focus on the performance of the technology itself. The most popular 
libraries in deep learning are Theano (for Python), Torch (for Lua), Tensorflow  
(for Python) and Caffe (for C++ and with a Python wrapper). There has been  
lot's of benchmarks to compare deep learning technologies.

In Bastien et al 2012 (Theano: new features and speed improvements, Frédéric Bastien, 
Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian Goodfellow, Arnaud Bergeron, Nicolas 
Bouchard, David Warde-Farley, Yoshua Bengio, Nov 2012), Theano made significant 
progress in speed, but the comparison on different tasks does not point a clear 
winner among the challenged technologies. Bahrampour et Al. 2016 (Comparative 
Study of Deep Learning Software Frameworks, Soheil Bahrampour, Naveen Ramakrishnan, 
Lukas Schott, Mohak Shah, mars 2016) conclude that:

• For GPU-based deployment of trained convolutional and fully connected 
networks, Torch is best suited, followed by Theano.

• For GPU-based training of convolutional and fully connected networks, 
Theano is fastest for small networks and Torch is fastest for larger networks

• For GPU-based training and deployment of recurrent networks (LSTM), 
Theano results in the best performance.

• For CPU-based  training and deployment of any tested deep network 
architecture, Torch performs the best followed by Theano

These results are confirmed in the open-source rnn-benchmarks (https://github.
com/glample/rnn-benchmarks) where for training (forward + backward passes), 
Theano outperforms Torch and TensorFlow. Also, Theano crushes Torch and 
TensorFlow for smaller batch sizes with larger numbers of hidden units. For bigger 
batch size and hidden layer size, the differences are smaller since they rely more 
on the performance of CUDA, the underlying NVIDIA graphic library common 
to all frameworks. Last, in up-to-date soumith benchmarks (https://github.com/
soumith/convnet-benchmarks), the fftconv in Theano performs the best on CPU, 
while the best performing convolution implementations on GPU, cuda-convnet2  
and fbfft, are CUDA extension, the underlying library. These results should  
convince the reader that, although results are mixed, Theano plays a leading  
role in the speed competition.

The second point to prefer Theano rather than Torch is that it comes with a rich 
ecosystem, taking benefit from the Python ecosystem, but also from a large number 
of libraries that have been developed for Theano. This book will present two of them, 
Lasagne, and Keras. Theano and Torch are the most extensible frameworks both 
in terms of supporting various deep architectures but also in terms of supported 
libraries. Last, Theano has not a reputation to be complex to debug, contrary to  
other deep learning libraries.
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The third point makes Theano an uncomparable tool for the computer scientist 
because it is not specific to deep learning. Although Theano presents the same 
methods for deep learning than other libraries, its underlying principles are very 
different: in fact, Theano compiles the computation graph on the target architecture. 
This compilation step makes Theano's specificity, and it should be defined as a 
mathematical expression compiler, designed with machine learning in mind. The 
symbolic differentiation is one of the most useful features that Theano offers for 
implementing non-standard deep architectures. Therefore, Theano is able to address 
a much larger range of numerical problems, and can be used to find the solution 
that minimizes any problem expressed with a differentiable loss or energy function, 
given an existing dataset.

What you need for this book
Theano installation requires conda or pip, and the install process is the same under 
Windows, Mac OS and Linux.

The code has been tested under Mac OS and Linux Ubuntu. There might be some 
specificities for Windows, such as modifying the paths, that the Windows developer 
will solve quite easily.

Code examples suppose there exists on your computer a shared folder, where to 
download, uncompress, and preprocess database files that can be very voluminous 
and should not be left inside code repositories. This practice helps spare some  
disk space, while multiple code directories and users can use the same copy of  
the database. The folder is usually shared between user spaces:

sudo mkdir /sharedfiles
sudo chmod 777 /sharedfiles

Who this book is for
This book is indented to provide the widest overview of deep learning, with Theano 
as support technology. The book is designed for the beginner in deep learning and 
artificial intelligence, as well as the computer programmer who wants to get a cross 
domain experience and become familiar with Theano and its supporting libraries. 
This book helps the reader to begin with deep learning, as well as getting the 
relevant and practical informations in deep learning.
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Are required some basic skills in Python programming and computer science, as 
well as skills in elementary algebra and calculus. The underlying technology for all 
experiments is Theano, and the book provides first an in-depth presentation of the 
core technology first, then introduces later on some libraries to do some reuse of 
existing modules.

The approach of this book is to introduce the reader to deep learning, describing the 
different types of networks and their applications, and in the meantime, exploring 
the possibilities offered by Theano, a deep learning technology, that will be the 
support for all implementations. This book sums up some of the best performing 
nets and state of the art results and helps the reader get the global picture of deep 
learning, taking her from the simple to the complex nets gradually.

Since Python has become the main programming language in data science, this book 
tries to cover all that a Python programmer needs to know to do deep learning with 
Python and Theano.

The book will introduce two abstraction frameworks on top of Theano, Lasagne and 
Keras, which can simplify the development of more complex nets, but do not prevent 
you from understanding the underlying concepts.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"The operator is defined by a class deriving from the generic theano.Op class."

A block of code is set as follows:

import theano, numpy

class AXPBOp(theano.Op):
    """
    This creates an Op that takes x to a*x+b.
    """
    __props__ = ("a", "b")

Any command-line input or output is written as follows:

gsutil mb -l europe-west1 gs://keras_sentiment_analysis
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New terms and important words are shown in bold. Words that you see on  
the screen, for example, in menus or dialog boxes, appear in the text like this: 
"Clicking the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at 
http://www.packtpub.com. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have the files e-mailed directly 
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
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4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the 
book's webpage at the Packt Publishing website. This page can be accessed by 
entering the book's name in the Search box. Please note that you need to be  
logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder 
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Deep-Learning-with-Theano. We also have other code bundles 
from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or  
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.
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Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.
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Theano Basics
This chapter presents Theano as a compute engine and the basics for symbolic 
computing with Theano. Symbolic computing consists of building graphs of 
operations that will be optimized later on for a specific architecture, using the 
computation libraries available for this architecture.

Although this chapter might appear to be a long way from practical applications, it 
is essential to have an understanding of the technology for the following chapters; 
what is it capable of and what value does it bring? All the following chapters address 
the applications of Theano when building all possible deep learning architectures.

Theano may be defined as a library for scientific computing; it has been available 
since 2007 and is particularly suited to deep learning. Two important features are 
at the core of any deep learning library: tensor operations, and the capability to run 
the code on CPU or Graphical Computation Unit (GPU). These two features enable 
us to work with a massive amount of multi-dimensional data. Moreover, Theano 
proposes automatic differentiation, a very useful feature that can solve a wider range 
of numeric optimizations than deep learning problems.

The chapter covers the following topics:

• Theano installation and loading
• Tensors and algebra
• Symbolic programming
• Graphs
• Automatic differentiation
• GPU programming
• Profiling
• Configuration
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The need for tensors
Usually, input data is represented with multi-dimensional arrays:

• Images have three dimensions: The number of channels, the width, and the 
height of the image

• Sounds and times series have one dimension: The duration
• Natural language sequences can be represented by two-dimensional 

arrays: The duration and the alphabet length or the vocabulary length

We'll see more examples of input data arrays in the future chapters.

In Theano, multi-dimensional arrays are implemented with an abstraction class, 
named tensor, with many more transformations available than traditional arrays in a 
computer language such as Python.

At each stage of a neural net, computations such as matrix multiplications involve 
multiple operations on these multi-dimensional arrays.

Classical arrays in programming languages do not have enough built-in 
functionalities to quickly and adequately address multi-dimensional computations 
and manipulations.

Computations on multi-dimensional arrays have a long history of optimizations, 
with tons of libraries and hardware. One of the most important gains in speed has 
been permitted by the massive parallel architecture of the GPU, with computation 
ability on a large number of cores, from a few hundred to a few thousand.

Compared to the traditional CPU, for example, a quadricore, 12-core, or 32-core 
engine, the gains with GPU can range from 5x to 100x, even if part of the code is 
still being executed on the CPU (data loading, GPU piloting, and result outputting). 
The main bottleneck with the use of GPU is usually the transfer of data between the 
memory of the CPU and the memory of the GPU, but still, when well programmed, 
the use of GPU helps bring a significant increase in speed of an order of magnitude. 
Getting results in days rather than months, or hours rather than days, is an 
undeniable benefit for experimentation.

The Theano engine has been designed to address the challenges of multi-dimensional 
arrays and architecture abstraction from the beginning.

There is another undeniable benefit of Theano for scientific computation: the 
automatic differentiation of functions of multi-dimensional arrays, a well-suited 
feature for model parameter inference via objective function minimization. Such 
a feature facilitates experimentation by releasing the pain to compute derivatives, 
which might not be very complicated, but are prone to many errors.
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Installing and loading Theano
In this section, we'll install Theano, run it on the CPU and GPU devices, and save the 
configuration.

Conda package and environment manager
The easiest way to install Theano is to use conda, a cross-platform package and 
environment manager.

If conda is not already installed on your operating system, the fastest way to install 
conda is to download the miniconda installer from https://conda.io/miniconda.
html. For example, for conda under Linux 64 bit and Python 2.7, use  
this command:

wget https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.
sh

chmod +x Miniconda2-latest-Linux-x86_64.sh

bash ./Miniconda2-latest-Linux-x86_64.sh

Conda enables us to create new environments in which versions of Python (2 or 3) 
and the installed packages may differ. The conda root environment uses the  
same version of Python as the version installed on the system on which you  
installed conda.

Installing and running Theano on CPU
Let's install Theano:

conda install theano

Run a Python session and try the following commands to check your configuration:

>>> from theano import theano

>>> theano.config.device
'cpu'

>>> theano.config.floatX
'float64'

>>> print(theano.config)

The last command prints all the configuration of Theano. The theano.config object 
contains keys to many configuration options.

https://conda.io/miniconda.html
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To infer the configuration options, Theano looks first at the ~/.theanorc file, then 
at any environment variables that are available, which override the former options, 
and lastly at the variable set in the code that are first in order of precedence:

>>> theano.config.floatX='float32'

Some of the properties might be read-only and cannot be changed in the code, 
but floatX, which sets the default floating point precision for floats, is among the 
properties that can be changed directly in the code.

It is advised to use float32 since GPU has a long history without 
float64. float64 execution speed on GPU is slower, sometimes much 
slower (2x to 32x on latest generation Pascal hardware), and float32 
precision is enough in practice.

GPU drivers and libraries
Theano enables the use of GPU, units that are usually used to compute the graphics 
to display on the computer screen.

To have Theano work on the GPU as well, a GPU backend library is required on 
your system.

The CUDA library (for NVIDIA GPU cards only) is the main choice for GPU 
computations. There is also the OpenCL standard, which is open source but far less 
developed, and much more experimental and rudimentary on Theano.

Most scientific computations still occur on NVIDIA cards at the moment. If you 
have an NVIDIA GPU card, download CUDA from the NVIDIA website, https://
developer.nvidia.com/cuda-downloads, and install it. The installer will install the 
latest version of the GPU drivers first, if they are not already installed. It will install 
the CUDA library in the /usr/local/cuda directory.

Install the cuDNN library, a library by NVIDIA, that offers faster implementations 
of some operations for the GPU. To install it, I usually copy the /usr/local/cuda 
directory to a new directory, /usr/local/cuda-{CUDA_VERSION}-cudnn-{CUDNN_
VERSION}, so that I can choose the version of CUDA and cuDNN, depending on the 
deep learning technology I use and its compatibility.

https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
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In your .bashrc profile, add the following line to set the $PATH and $LD_LIBRARY_
PATH variables:

export PATH=/usr/local/cuda-8.0-cudnn-5.1/bin:$PATH

export LD_LIBRARY_PATH=/usr/local/cuda-8.0-cudnn-5.1/lib64:/usr/local/
cuda-8.0-cudnn-5.1/lib:$LD_LIBRARY_PATH

Installing and running Theano on GPU
N-dimensional GPU arrays have been implemented in Python in six different 
GPU libraries (Theano/CudaNdarray,PyCUDA/ GPUArray,CUDAMAT/ CUDAMatrix, 
PYOPENCL/GPUArray, Clyther, Copperhead), are a  subset of NumPy.ndarray. 
Libgpuarray is a backend library to have them in a common interface with the  
same property.

To install libgpuarray with conda, use this command:

conda install pygpu

To run Theano in GPU mode, you need to configure the config.device variable 
before execution since it is a read-only variable once the code is run. Run this 
command with the THEANO_FLAGS environment variable:

THEANO_FLAGS="device=cuda,floatX=float32" python
>>> import theano
Using cuDNN version 5110 on context None
Mapped name None to device cuda: Tesla K80 (0000:83:00.0)

>>> theano.config.device
'gpu'

>>> theano.config.floatX
'float32'

The first return shows that GPU device has been correctly detected, and specifies 
which GPU it uses.
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By default, Theano activates CNMeM, a faster CUDA memory allocator. An initial 
pre-allocation can be specified with the gpuarra.preallocate option. At the end, 
my launch command will be as follows:

THEANO_FLAGS="device=cuda,floatX=float32,gpuarray.preallocate=0.8" python

>>> from theano import theano

Using cuDNN version 5110 on context None

Preallocating 9151/11439 Mb (0.800000) on cuda

Mapped name None to device cuda: Tesla K80 (0000:83:00.0)

The first line confirms that cuDNN is active, the second confirms memory pre-
allocation. The third line gives the default context name (that is, None when flag 
device=cuda is set) and the model of GPU used, while the default context name for 
the CPU will always be cpu.

It is possible to specify a different GPU than the first one, setting the device to cuda0, 
cuda1,... for multi-GPU computers. It is also possible to run a program on multiple 
GPU in parallel or in sequence (when the memory of one GPU is not sufficient), in 
particular when training very deep neural nets, as for classification of full images 
as described in Chapter 7, Classifying Images with Residual Networks. In this case, the 
contexts=dev0->cuda0;dev1->cuda1;dev2->cuda2;dev3->cuda3 flag activates 
multiple GPUs instead of one, and designates the context name to each GPU device 
to be used in the code. Here is an example on a 4-GPU instance:

THEANO_FLAGS="contexts=dev0->cuda0;dev1->cuda1;dev2->cuda2;dev3-
>cuda3,floatX=float32,gpuarray.preallocate=0.8" python

>>> import theano

Using cuDNN version 5110 on context None

Preallocating 9177/11471 Mb (0.800000) on cuda0

Mapped name dev0 to device cuda0: Tesla K80 (0000:83:00.0)

Using cuDNN version 5110 on context dev1

Preallocating 9177/11471 Mb (0.800000) on cuda1

Mapped name dev1 to device cuda1: Tesla K80 (0000:84:00.0)

Using cuDNN version 5110 on context dev2

Preallocating 9177/11471 Mb (0.800000) on cuda2

Mapped name dev2 to device cuda2: Tesla K80 (0000:87:00.0)

Using cuDNN version 5110 on context dev3

Preallocating 9177/11471 Mb (0.800000) on cuda3

Mapped name dev3 to device cuda3: Tesla K80 (0000:88:00.0)
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To assign computations to a specific GPU in this multi-GPU setting, the names 
we choose, dev0, dev1, dev2, and dev3, have been mapped to each device (cuda0, 
cuda1, cuda2, cuda3).

This name mapping enables to write codes that are independent of the underlying 
GPU assignments and libraries (CUDA or others).

To keep the current configuration flags active at every Python session or execution 
without using environment variables, save your configuration in the ~/.theanorc 
file as follows:

 [global]
 floatX = float32
 device = cuda0
 [gpuarray]
 preallocate = 1

Now you can simply run python command. You are now all set.

Tensors
In Python, some scientific libraries such as NumPy provide multi-dimensional 
arrays. Theano doesn't replace Numpy, but it works in concert with it. NumPy is 
used for the initialization of tensors.

To perform the same computation on CPU and GPU, variables are symbolic and 
represented by the tensor class, an abstraction, and writing numerical expressions 
consists of building a computation graph of variable nodes and apply nodes. 
Depending on the platform on which the computation graph will be compiled, 
tensors are replaced by either of the following:

• A TensorType variable, which has to be on CPU
• A GpuArrayType variable, which has to be on GPU

That way, the code can be written indifferently of the platform where it will  
be executed.
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Here are a few tensor objects:

Object class Number of dimensions Example
theano.tensor.scalar 0-dimensional array 1, 2.5
theano.tensor.vector 1-dimensional array [0,3,20]
theano.tensor.matrix 2-dimensional array [[2,3][1,5]]
theano.tensor.tensor3 3-dimensional array [[[2,3][1,5]],[[1,2],[3,4]]]

Playing with these Theano objects in the Python shell gives us a better idea:

>>> import theano.tensor as T

>>> T.scalar()
<TensorType(float32, scalar)>

>>> T.iscalar()
<TensorType(int32, scalar)>

>>> T.fscalar()
<TensorType(float32, scalar)>

>>> T.dscalar()
<TensorType(float64, scalar)>

With i, l, f, or d in front of the object name, you initiate a tensor of a given type, 
integer32, integer64, float32, or float64. For real-valued (floating point) data, it 
is advised to use the direct form T.scalar() instead of the f or d variants since the 
direct form will use your current configuration for floats:

>>> theano.config.floatX = 'float64'

>>> T.scalar()
<TensorType(float64, scalar)>

>>> T.fscalar()
<TensorType(float32, scalar)>

>>> theano.config.floatX = 'float32'

>>> T.scalar()
<TensorType(float32, scalar)>
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Symbolic variables do either of the following:

• Play the role of placeholders, as a starting point to build your graph of 
numerical operations (such as addition, multiplication): they receive the flow 
of the incoming data during the evaluation once the graph has been compiled

• Represent intermediate or output results

Symbolic variables and operations are both part of a computation graph that will be 
compiled either on CPU or GPU for fast execution. Let's write our first computation 
graph consisting of a simple addition:

>>> x = T.matrix('x')

>>> y = T.matrix('y')

>>> z = x + y

>>> theano.pp(z)
'(x + y)'

>>> z.eval({x: [[1, 2], [1, 3]], y: [[1, 0], [3, 4]]})
array([[ 2.,  2.],
       [ 4.,  7.]], dtype=float32)

First, two symbolic variables, or variable nodes, are created, with the names x and y, 
and an addition operation, an apply node, is applied between both of them to create a 
new symbolic variable, z, in the computation graph.

The pretty print function, pp, prints the expression represented by Theano symbolic 
variables. Eval evaluates the value of the output variable, z, when the first two 
variables, x and y, are initialized with two numerical 2-dimensional arrays.

The following example shows the difference between the variables x and y, and their 
names x and y:

>>> a = T.matrix()

>>> b = T.matrix()

>>> theano.pp(a + b)
'(<TensorType(float32, matrix)> + <TensorType(float32, matrix)>)'.
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Without names, it is more complicated to trace the nodes in a large graph. When 
printing the computation graph, names significantly help diagnose problems,  
while variables are only used to handle the objects in the graph:

>>> x = T.matrix('x')

>>> x = x + x

>>> theano.pp(x)
'(x + x)'

Here, the original symbolic variable, named x, does not change and stays part of the 
computation graph. x + x creates a new symbolic variable we assign to the Python 
variable x.

Note also that with the names, the plural form initializes multiple tensors at the  
same time:

>>> x, y, z = T.matrices('x', 'y', 'z')

Now, let's have a look at the different functions to display the graph.

Graphs and symbolic computing
Let's take back the simple addition example and present different ways to display 
the same information:

>>> x = T.matrix('x')

>>> y = T.matrix('y')

>>> z = x + y

>>> z

Elemwise{add,no_inplace}.0

>>> theano.pp(z)

'(x + y)

>>> theano.printing.pprint(z)

'(x + y)'

>>> theano.printing.debugprint(z)
Elemwise{add,no_inplace} [id A] ''   
 |x [id B]
 |y [id C]
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Here, the debugprint function prints the pre-compilation graph, the unoptimized 
graph. In this case, it is composed of two variable nodes, x and y, and an apply node, 
the elementwise addition, with the no_inplace option. The inplace option will be 
used in the optimized graph to save memory and re-use the memory of the input to 
store the result of the operation.

If the graphviz and pydot libraries have been installed, the pydotprint command 
outputs a PNG image of the graph:

>>> theano.printing.pydotprint(z)
The output file is available at ~/.theano/compiledir_Linux-4.4--
generic-x86_64-with-Ubuntu-16.04-xenial-x86_64-2.7.12-64/theano.
pydotprint.gpu.png.

You might have noticed that the z.eval command takes while to execute the first 
time. The reason for this delay is the time required to optimize the mathematical 
expression and compile the code for the CPU or GPU before being evaluated.

The compiled expression can be obtained explicitly and used as a function that 
behaves as a traditional Python function:

>>> addition = theano.function([x, y], [z])

>>> addition([[1, 2], [1, 3]], [[1, 0], [3, 4]])
[array([[ 2.,  2.],
       [ 4.,  7.]], dtype=float32)]

The first argument in the function creation is a list of variables representing the input 
nodes of the graph. The second argument is the array of output variables. To print 
the post compilation graph, use this command:

>>> theano.printing.debugprint(addition)
HostFromGpu(gpuarray) [id A] ''   3
 |GpuElemwise{Add}[(0, 0)]<gpuarray> [id B] ''   2
   |GpuFromHost<None> [id C] ''   1
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   | |x [id D]
   |GpuFromHost<None> [id E] ''   0
     |y [id F]

>>> theano.printing.pydotprint(addition)

The output file is available at ~/.theano/compiledir_Linux-4.4--generic-
x86_64-with-Ubuntu-16.04-xenial-x86_64-2.7.12-64/theano.
pydotprint.gpu.png:

This case has been printed while using the GPU. During compilation, each operation 
has chosen the available GPU implementation. The main program still runs on CPU, 
where the data resides, but a GpuFromHost instruction performs a data transfer from 
the CPU to the GPU for input, while the opposite operation, HostFromGpu, fetches 
the result for the main program to display it:
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Theano performs some mathematical optimizations, such as grouping elementwise 
operations, adding a new value to the previous addition:

>>> z= z * x

>>> theano.printing.debugprint(theano.function([x,y],z))
HostFromGpu(gpuarray) [id A] ''   3
 |GpuElemwise{Composite{((i0 + i1) * i0)}}[(0, 0)]<gpuarray> [id B] ''   
2
   |GpuFromHost<None> [id C] ''   1
   | |x [id D]
   |GpuFromHost<None> [id E] ''   0
     |y [id F]

The number of nodes in the graph has not increased: two additions have been 
merged into one node. Such optimizations make it more tricky to debug, so we'll 
show you at the end of this chapter how to disable optimizations for debugging.

Lastly, let's see a bit more about setting the initial value with NumPy:

>>> theano.config.floatX
'float32'

>>> x = T.matrix()

>>> x
<TensorType(float32, matrix)>

>>> y = T.matrix()

>>> addition = theano.function([x, y], [x+y])

>>> addition(numpy.ones((2,2)),numpy.zeros((2,2)))
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/usr/local/lib/python2.7/site-packages/theano/compile/
function_module.py", line 786, in __call__
    allow_downcast=s.allow_downcast)
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  File "/usr/local/lib/python2.7/site-packages/theano/tensor/type.py", 
line 139, in filter
    raise TypeError(err_msg, data)
TypeError: ('Bad input argument to theano function with name 
"<stdin>:1"  at index 0(0-based)', 'TensorType(float32, matrix) cannot 
store a value of dtype float64 without risking loss of precision. 
If you do not mind this loss, you can: 1) explicitly cast your data 
to float32, or 2) set "allow_input_downcast=True" when calling 
"function".', array([[ 1.,  1.],
       [ 1.,  1.]]))

Executing the function on the NumPy arrays throws an error related to loss of 
precision, since the NumPy arrays here have float64 and int64 dtypes, but x and 
y are float32. There are multiple solutions to this; the first is to create the NumPy 
arrays with the right dtype:

>>> import numpy

>>> addition(numpy.ones((2,2), dtype=theano.config.floatX),numpy.
zeros((2,2), dtype=theano.config.floatX))
[array([[ 1.,  1.],
        [ 1.,  1.]], dtype=float32)]

Alternatively, cast the NumPy arrays (in particular for numpy.diag, which does not 
allow us to choose the dtype directly):

>>> addition(numpy.ones((2,2)).astype(theano.config.floatX),numpy.
diag((2,3)).astype(theano.config.floatX))
[array([[ 3.,  1.],
        [ 1.,  4.]], dtype=float32)]

Or we could allow downcasting:

>>> addition = theano.function([x, y], [x+y],allow_input_
downcast=True)

>>> addition(numpy.ones((2,2)),numpy.zeros((2,2)))
[array([[ 1.,  1.],
        [ 1.,  1.]], dtype=float32)]

Operations on tensors
We have seen how to create a computation graph composed of symbolic variables 
and operations, and compile the resulting expression for an evaluation or as a 
function, either on GPU or on CPU.
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As tensors are very important to deep learning, Theano provides lots of operators 
to work with tensors. Most operators that exist in scientific computing libraries such 
as NumPy for numerical arrays have their equivalent in Theano and have a similar 
name, in order to be more familiar to NumPy's users. But contrary to NumPy, 
expressions written with Theano can be compiled either on CPU or GPU.

This, for example, is the case for tensor creation:

• T.zeros(), T.ones(), T.eye() operators take a shape tuple as input
• T.zeros_like(), T.one_like(), T.identity_like() use the shape of the 

tensor argument
• T.arange(), T.mgrid(), T.ogrid() are used for range and mesh grid arrays

Let's have a look in the Python shell:

>>> a = T.zeros((2,3))

>>> a.eval()
array([[ 0.,  0.,  0.],
       [ 0.,  0.,  0.]])

>>> b = T.identity_like(a)

>>> b.eval()
array([[ 1.,  0.,  0.],
        [ 0.,  1.,  0.]])

>>> c = T.arange(10)

>>> c.eval()
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Information such as the number of dimensions, ndim, and the type, dtype, are 
defined at tensor creation and cannot be modified later:

>>> c.ndim
1

>>> c.dtype
'int64'

>>> c.type
TensorType(int64, vector)
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Some other information, such as shape, is evaluated by the computation graph:

>>> a = T.matrix()

>>> a.shape
Shape.0

>>> a.shape.eval({a: [[1, 2], [1, 3]]})
array([2, 2])

>>> shape_fct = theano.function([a],a.shape)

>>> shape_fct([[1, 2], [1, 3]])
array([2, 2])

>>> n = T.iscalar()

>>> c = T.arange(n)

>>> c.shape.eval({n:10})
array([10])

Dimension manipulation operators
The first type of operator on tensor is for dimension manipulation. This type of 
operator takes a tensor as input and returns a new tensor:

Operator Description
T.reshape Reshape the dimension of the tensor
T.fill Fill the array with the same value
T.flatten Return all elements in a 1-dimensional tensor (vector)
T.dimshuffle Change the order of the dimension, more or less like NumPy's 

transpose method – the main difference is that it can be used 
to add or remove broadcastable dimensions (of length 1).

T.squeeze Reshape by removing dimensions equal to 1
T.transpose Transpose
T.swapaxes Swap dimensions
T.sort, T.argsort Sort tensor, or indices of the order
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For example, the reshape operation's output represents a new tensor, containing the 
same elements in the same order but in a different shape:

>>> a = T.arange(10)

>>> b = T.reshape( a, (5,2) )

>>> b.eval()
array([[0, 1],
       [2, 3], 
       [4, 5],
       [6, 7],
       [8, 9]])

The operators can be chained:

>>> T.arange(10).reshape((5,2))[::-1].T.eval()
array([[8, 6, 4, 2, 0],
       [9, 7, 5, 3, 1]])

Notice the use of traditional [::-1] array access by indices in Python and the .T for 
T.transpose.

Elementwise operators
The second type of operations on multi-dimensional arrays is elementwise operators.

The  first category of elementwise operations takes two input tensors of the same 
dimensions and applies a function, f, elementwise, which means on all pairs of 
elements with the same coordinates in the respective tensors f([a,b],[c,d]) = [ 
f(a,c), f(b,d)]. For example, here's multiplication:

>>> a, b = T.matrices('a', 'b')

>>> z = a * b

>>> z.eval({a:numpy.ones((2,2)).astype(theano.config.floatX), b:numpy.
diag((3,3)).astype(theano.config.floatX)})
array([[ 3.,  0.],
       [ 0.,  3.]])

The same multiplication can be written as follows:

>>> z = T.mul(a, b)
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T.add and T.mul accept an arbitrary number of inputs:

>>> z = T.mul(a, b, a, b)

Some elementwise operators accept only one input tensor f([a,b]) = 
[f(a),f(b)]):

>>> a = T.matrix()

>>> z = a ** 2 

>>> z.eval({a:numpy.diag((3,3)).astype(theano.config.floatX)})
array([[ 9.,  0.], 
       [ 0.,  9.]])

Lastly, I would like to introduce the mechanism of broadcasting. When the input 
tensors do not have the same number of dimensions, the missing dimension will be 
broadcasted, meaning the tensor will be repeated along that dimension to match the 
dimension of the other tensor. For example, taking one multi-dimensional tensor and 
a scalar (0-dimensional) tensor, the scalar will be repeated in an array of the same 
shape as the multi-dimensional tensor so that the final shapes will match and the 
elementwise operation will be applied, f([a,b], c) = [ f(a,c), f(b,c) ]:

>>> a = T.matrix()

>>> b = T.scalar()

>>> z = a * b

>>> z.eval({a:numpy.diag((3,3)).astype(theano.config.floatX),b:3})
array([[ 6.,  0.],
       [ 0.,  6.]])

Here is a list of elementwise operations:

Operator Other form Description
T.add, T.sub, T.mul, 
T.truediv

+, -, *, / Add, subtract, multiply, divide

T.pow, T.sqrt **, T.sqrt Power, square root
T.exp, T.log Exponential, logarithm
T.cos, T.sin, T.tan Cosine, sine, tangent
T.cosh, T.sinh, 
T.tanh

Hyperbolic trigonometric functions

T.intdiv, T.mod //, % Int div, modulus
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Operator Other form Description
T.floor, T.ceil, 
T.round

Rounding operators

T.sgn Sign
T.and_, T.xor, T.or_, 
T.invert

&,^,|,~ Bitwise operators

T.gt, T.lt, T.ge, 
T.le

>, <, >=, <= Comparison operators

T.eq, T.neq, 
T.isclose

Equality, inequality, or close  
with tolerance

T.isnan Comparison with NaN  
(not a number)

T.abs_ Absolute value
T.minimum, T.maximum Minimum and maximum 

elementwise
T.clip Clip the values between a maximum 

and a minimum
T.switch Switch
T.cast Tensor type casting

The elementwise operators always return an array with the same size as the input 
array. T.switch and T.clip accept three inputs.

In particular, T.switch will perform the traditional switch operator elementwise:

>>> cond = T.vector('cond')

>>> x,y = T.vectors('x','y')

>>> z = T.switch(cond, x, y)

>>> z.eval({ cond:[1,0], x:[10,10], y:[3,2] })
array([ 10.,   2.], dtype=float32)

At the same position where cond tensor is true, the result has the x value; otherwise, 
if it is false, it has the y value.
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For the T.switch operator, there is a specific equivalent, ifelse, that takes a scalar 
condition instead of a tensor condition. It is not an elementwise operation though, 
and supports lazy evaluation (not all elements are computed if the answer is known 
before it finishes):

>>> from theano.ifelse import ifelse

>>> z=ifelse(1, 5, 4)

>>> z.eval()
array(5, dtype=int8)

Reduction operators
Another type of operation on tensors is reductions, reducing all elements to a scalar 
value in most cases, and for that purpose, it is required to scan all the elements of the 
tensor to compute the output:

Operator Description
T.max, T.argmax, T.max_and_argmax Maximum, index of the maximum
T.min, T.argmin Minimum, index of the minimum
T.sum, T.prod Sum or product of elements
T.mean, T.var, T.std Mean, variance, and standard deviation
T.all, T.any AND and OR operations with all elements
T.ptp Range of elements (minimum, maximum)

These operations are also available row-wise or column-wise by specifying an axis 
and the dimension along which the reduction is performed:

>>> a = T.matrix('a')

>>> T.max(a).eval({a:[[1,2],[3,4]]})
array(4.0, dtype=float32)

>>> T.max(a,axis=0).eval({a:[[1,2],[3,4]]})
array([ 3.,  4.], dtype=float32)

>>> T.max(a,axis=1).eval({a:[[1,2],[3,4]]})
array([ 2.,  4.], dtype=float32)
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Linear algebra operators
A third category of operations are the linear algebra operators, such as matrix 
multiplication:

Also called inner product for vectors:

Operator Description
T.dot Matrix multiplication/inner product
T.outer Outer product

There are some generalized (T.tensordot to specify the axis), or batched (batched_
dot, batched_tensordot) versions of the operators.

Lastly, a few operators remain and can be very useful, but they do not belong  
to any of the previous categories: T.concatenate concatenates the tensors along the 
specified dimension, T.stack creates a new dimension to stack the input tensors, 
and T.stacklist creates new patterns to stack tensors together:

>>> a = T.arange(10).reshape((5,2))

>>> b = a[::-1]

>>> b.eval()
array([[8, 9],
       [6, 7],
       [4, 5],
       [2, 3],
       [0, 1]])
>>> a.eval()
array([[0, 1],
       [2, 3],
       [4, 5],
       [6, 7],
       [8, 9]])
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>>> T.concatenate([a,b]).eval()
array([[0, 1],
       [2, 3],
       [4, 5],
       [6, 7],
       [8, 9],
       [8, 9],
       [6, 7],
       [4, 5],
       [2, 3],
       [0, 1]])
>>> T.concatenate([a,b],axis=1).eval()
array([[0, 1, 8, 9],
       [2, 3, 6, 7],
       [4, 5, 4, 5],
       [6, 7, 2, 3],
       [8, 9, 0, 1]])

>>> T.stack([a,b]).eval()
array([[[0, 1],
        [2, 3],
        [4, 5],
        [6, 7],
        [8, 9]],
       [[8, 9],
        [6, 7],
        [4, 5],
        [2, 3],
        [0, 1]]])

An equivalent of the NumPy expressions a[5:] = 5 and a[5:] += 5 exists as  
two functions:

>>> a.eval()
array([[0, 1],
       [2, 3],
       [4, 5],
       [6, 7],
       [8, 9]])

>>> T.set_subtensor(a[3:], [-1,-1]).eval()
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array([[ 0,  1],
       [ 2,  3],
       [ 4,  5],
       [-1, -1],
       [-1, -1]])

>>> T.inc_subtensor(a[3:], [-1,-1]).eval()
array([[0, 1],
       [2, 3],
       [4, 5],
       [5, 6],
       [7, 8]])

Unlike NumPy's syntax, the original tensor is not modified; instead, a new variable is 
created that represents the result of that modification. Therefore, the original variable 
a still refers to the original value, and the returned variable (here unassigned) 
represents the updated one, and the user should use that new variable in the rest of 
their computation.

Memory and variables
It is good practice to always cast float arrays to the theano.config.floatX type:

• Either at the array creation with numpy.array(array, dtype=theano.
config.floatX)

• Or by casting the array as array.as_type(theano.config.floatX) so that 
when compiling on the GPU, the correct type is used

For example, let's transfer the data manually to the GPU (for which the default 
context is None), and for that purpose, we need to use float32 values:

>>> theano.config.floatX = 'float32'

>>> a = T.matrix()

>>> b = a.transfer(None)

>>> b.eval({a:numpy.ones((2,2)).astype(theano.config.floatX)})
gpuarray.array([[ 1.  1.]
 [ 1.  1.]], dtype=float32)
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 >>> theano.printing.debugprint(b)
GpuFromHost<None> [id A] ''   
 |<TensorType(float32, matrix)> [id B]

The transfer(device) functions, such as transfer('cpu'), enable us to move 
the data from one device to another one. It is particularly useful when parts of the 
graph have to be executed on different devices. Otherwise, Theano adds the transfer 
functions automatically to the GPU in the optimization phase:

>>> a = T.matrix('a')

>>> b = a ** 2

>>> sq = theano.function([a],b)

>>> theano.printing.debugprint(sq)
HostFromGpu(gpuarray) [id A] ''   2
 |GpuElemwise{Sqr}[(0, 0)]<gpuarray> [id B] ''   1
   |GpuFromHost<None> [id C] ''   0
     |a [id D]

Using the transfer function explicitly, Theano removes the transfer back to CPU. 
Leaving the output tensor on the GPU saves a costly transfer:

>>> b = b.transfer(None)

>>> sq = theano.function([a],b)

>>> theano.printing.debugprint(sq)
GpuElemwise{Sqr}[(0, 0)]<gpuarray> [id A] ''   1
 |GpuFromHost<None> [id B] ''   0
   |a [id C]

The default context for the CPU is cpu:

>>> b = a.transfer('cpu')

>>> theano.printing.debugprint(b)
<TensorType(float32, matrix)> [id A]

A hybrid concept between numerical values and symbolic variables is the shared 
variables. They can also lead to better performance on the GPU by avoiding 
transfers. Initializing a shared variable with the scalar zero:

>>> state = shared(0)

>>> state



Chapter 1.

[ 25 ]

<TensorType(int64, scalar)>

>>> state.get_value()
array(0)

>>> state.set_value(1)

>>> state.get_value()
array(1)

Shared values are designed to be shared between functions. They can also be seen as 
an internal state. They can be used indifferently from the GPU or the CPU compile 
code. By default, shared variables are created on the default device (here, cuda), 
except for scalar integer values (as is the case in the previous example).

It is possible to specify another context, such as cpu. In the case of multiple GPU 
instances, you'll define your contexts in the Python command line, and decide on 
which context to create the shared variables:

PATH=/usr/local/cuda-8.0-cudnn-5.1/bin:$PATH THEANO_FLAGS="contexts=dev0-
>cuda0;dev1->cuda1,floatX=float32,gpuarray.preallocate=0.8" python

>>> from theano import theano
Using cuDNN version 5110 on context dev0
Preallocating 9151/11439 Mb (0.800000) on cuda0
Mapped name dev0 to device cuda0: Tesla K80 (0000:83:00.0)
Using cuDNN version 5110 on context dev1
Preallocating 9151/11439 Mb (0.800000) on cuda1
Mapped name dev1 to device cuda1: Tesla K80 (0000:84:00.0)

>>> import theano.tensor as T

>>> import numpy

>>> theano.shared(numpy.random.random((1024, 1024)).astype('float32'),
target='dev1')
<GpuArrayType<dev1>(float32, (False, False))>

Functions and automatic differentiation
The previous section introduced the function instruction to compile the expression. 
In this section, we develop some of the following arguments in its signature:

def theano.function(inputs, 
 outputs=None, updates=None, givens=None,
 allow_input_downcast=None, mode=None, profile=None,
   )
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We've already used the allow_input_downcast feature to convert data from 
float64 to float32, int64 to int32 and so on. The mode and profile features 
are also displayed because they'll be presented in the optimization and debugging 
section.

Input variables of a Theano function should be contained in a list, even when there is 
a single input.

For outputs, it is possible to use a list in the case of multiple outputs to be computed 
in parallel:

>>> a = T.matrix()

>>> ex = theano.function([a],[T.exp(a),T.log(a),a**2])

>>> ex(numpy.random.randn(3,3).astype(theano.config.floatX))
[array([[ 2.33447003,  0.30287042,  0.63557744],
       [ 0.18511547,  1.34327984,  0.42203984],
       [ 0.87083125,  5.01169062,  6.88732481]], dtype=float32),
array([[-0.16512829,         nan,         nan],
       [        nan, -1.2203927 ,         nan],
       [        nan,  0.47733498,  0.65735561]], dtype=float32),
array([[ 0.71873927,  1.42671108,  0.20540957],
       [ 2.84521151,  0.08709242,  0.74417454],
       [ 0.01912885,  2.59781313,  3.72367549]], dtype=float32)]

The second useful attribute is the updates attribute, used to set new values to shared 
variables once the expression has been evaluated:

>>> w = shared(1.0)

>>> x = T.scalar('x')

>>> mul = theano.function([x],updates=[(w,w*x)])

>>> mul(4)
[]

>>> w.get_value()
array(4.0)

Such a mechanism can be used as an internal state. The shared variable w has been 
defined outside the function.
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With the givens parameter, it is possible to change the value of any symbolic 
variable in the graph, without changing the graph. The new value will then be  
used by all the other expressions that were pointing to it.

The last and most important feature in Theano is the automatic differentiation, which 
means that Theano computes the derivatives of all previous tensor operators. Such a 
differentiation is performed via the theano.grad operator:

>>> a = T.scalar()

>>> pow = a ** 2

>>> g = theano.grad(pow,a)

>>> theano.printing.pydotprint(g)

>>> theano.printing.pydotprint(theano.function([a],g))

In the optimization graph, theano.grad has computed the gradient of  with 
respect to a, which is a symbolic expression equivalent to 2 * a.

Note that it is only possible to take the gradient of a scalar, but the wrt variables can 
be arbitrary tensors.

Loops in symbolic computing
The Python for loop can be used outside the symbolic graph, as in a normal Python 
program. But outside the graph, a traditional Python for loop isn't compiled, so it 
will not be optimized with parallel and algebra libraries, cannot be automatically 
differentiated, and introduces costly data transfers if the computation subgraph has 
been optimized for GPU.
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That's why a symbolic operator, T.scan, is designed to create a for loop as an 
operator inside the graph. Theano will unroll the loop into the graph structure and 
the whole unrolled loop is going to be compiled on the target architecture as the rest 
of the computation graph. Its signature is as follows:

def scan(fn,
         sequences=None,
         outputs_info=None,
         non_sequences=None,
         n_steps=None,
         truncate_gradient=-1,
         go_backwards=False,
         mode=None,
         name=None,
         profile=False,
         allow_gc=None,
         strict=False)

The scan operator is very useful to implement array loops, reductions, maps,  
multi-dimensional derivatives such as Jacobian or Hessian, and recurrences.

The scan operator is running the fn function repeatedly for n_steps. If n_steps is 
None, the operator will find out by the length of the sequences:

The step fn function is a function that builds a symbolic graph, and  
that function will only get called once. However, that graph will then  
be compiled into another Theano function that will be called repeatedly. 
Some users try to pass a compile Theano function as fn, which is not 
possible.

Sequences are the lists of input variables to loop over. The number of steps will 
correspond to the shortest sequence in the list. Let's have a look:

>>> a = T.matrix()

>>> b = T.matrix()

>>> def fn(x): return x + 1

>>> results, updates = theano.scan(fn, sequences=a)

>>> f = theano.function([a], results, updates=updates)

>>> f(numpy.ones((2,3)).astype(theano.config.floatX))

array([[ 2.,  2.,  2.],
       [ 2.,  2.,  2.]], dtype=float32)
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The scan operator has been running the function against all elements in the input 
tensor, a, and kept the same shape as the input tensor, (2,3).

It is a good practice to add the updates returned by theano.scan in the 
theano.function, even if these updates are empty.

The arguments given to the fn function can be much more complicated. T.scan  
will call the fn function at each step with the following argument list, in the 
following order:

fn( sequences (if any), prior results (if needed), non-sequences (if 
any) )

As shown in the following figure, three arrows are directed towards the fn step 
function and represent the three types of possible input at each time step in the loop:
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If specified, the outputs_info parameter is the initial state to use to start recurrence 
from. The parameter name does not sound very good, but the initial state also gives 
the shape information of the last state, as well as all other states. The initial state can 
be seen as the first output. The final output will be an array of states.

For example, to compute the cumulative sum in a vector, with an initial state of the 
sum at 0, use this code:

>>> a = T.vector()

>>> s0 = T.scalar("s0")

>>> def fn( current_element, prior ):
...   return prior + current_element

>>> results, updates = theano.scan(fn=fn,outputs_info=s0,sequences=a)

>>> f = theano.function([a,s0], results, updates=updates)

>>> f([0,3,5],0)
array([ 0.,  3.,  8.], dtype=float32)

When outputs_info is set, the first dimension of the outputs_info and sequence 
variables is the time step. The second dimension is the dimensionality of data at each 
time step.

In particular, outputs_info has the number of previous time-steps required to 
compute the first step.

Here is the same example, but with a vector at each time step instead of a scalar for 
the input data:

>>> a = T.matrix()

>>> s0 = T.scalar("s0")

>>> def fn( current_element, prior ):
...   return prior + current_element.sum()

>>> results, updates = theano.scan(fn=fn,outputs_info=s0,sequences=a)

>>> f = theano.function([a,s0], results, updates=updates)

>>> f(numpy.ones((20,5)).astype(theano.config.floatX),0)
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array([   5.,   10.,   15.,   20.,   25.,   30.,   35.,   40.,   45.,
         50.,   55.,   60.,   65.,   70.,   75.,   80.,   85.,   90.,
         95.,  100.], dtype=float32)

Twenty steps along the rows (times) have accumulated the sum of all elements. Note 
that initial state (here 0) given by the outputs_info argument is not part of the 
output sequence.

The recurrent function, fn, may be provided with some fixed data, independent of 
the step in the loop, thanks to the non_sequences scan parameter:

>>> a = T.vector()

>>> s0 = T.scalar("s0")

>>> def fn( current_element, prior, non_seq ):
...   return non_seq * prior + current_element

>>> results, updates = theano.scan(fn=fn,n_
steps=10,sequences=a,outputs_info=T.constant(0.0),non_sequences=s0)

>>> f = theano.function([a,s0], results, updates=updates)

>>> f(numpy.ones((20)).astype(theano.),5)
array([  1.00000000e+00,   6.00000000e+00,   3.10000000e+01,
         1.56000000e+02,   7.81000000e+02,   3.90600000e+03,
         1.95310000e+04,   9.76560000e+04,   4.88281000e+05,
         2.44140600e+06], dtype=float32)

It is multiplying the prior value by 5 and adding the new element.

Note that T.scan in the optimized graph on GPU does not execute different 
iterations of the loop in parallel, even in the absence of recurrence.

Configuration, profiling and debugging
For debugging purpose, Theano can print more verbose information and offers 
different optimization modes:

>>> theano.config.exception_verbosity='high'

>>> theano.config.mode
'Mode'

>>> theano.config.optimizer='fast_compile'
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In order for Theano to use the config.optimizer value, the mode has to be set to 
Mode, otherwise the value in config.mode will be used:

config.mode / function mode config.optimizer (*) Description
FAST_RUN fast_run Default; best run performance, slow 

compilation
FAST_RUN None Disable optimizations
FAST_COMPILE fast_compile Reduce the number of 

optimizations, compiles faster
None Use the default mode, equivalent to 

FAST_RUN; optimizer=None
NanGuardMode NaNs, Infs, and abnormally big 

value will raise errors
DebugMode Self-checks and assertions during 

compilation

The same parameter as in config.mode can be used in the Mode parameter in the 
function compile:

>>> f = theano.function([a,s0], results, updates=updates, mode='FAST_
COMPILE')

Disabling optimization and choosing high verbosity will help finding errors in the 
computation graph.

For debugging on the GPU, you need to set a synchronous execution with the 
environment variable CUDA_LAUNCH_BLOCKING, since GPU execution is by default, 
fully asynchronous:

  CUDA_LAUNCH_BLOCKING=1 python

To find out the origin of the latencies in your computation graph, Theano provides a 
profiling mode.

Activate profiling:

>>> theano.config.profile=True 

Activate memory profiling:

>>> theano.config.profile_memory=True

Activate profiling of optimization phase:

>>> theano.config.profile_optimizer=True 
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Or directly during compilation:

>>> f = theano.function([a,s0], results, profile=True)

>>> f.profile.summary()
Function profiling
==================
  Message: <stdin>:1
  Time in 1 calls to Function.__call__: 1.490116e-03s
  Time in Function.fn.__call__: 1.251936e-03s (84.016%)
  Time in thunks: 1.203537e-03s (80.768%)
  Total compile time: 1.720619e-01s
    Number of Apply nodes: 14
    Theano Optimizer time: 1.382768e-01s
       Theano validate time: 1.308680e-03s
    Theano Linker time (includes C, CUDA code generation/compiling): 
2.405691e-02s
       Import time 1.272917e-03s
       Node make_thunk time 2.329803e-02s

Time in all call to theano.grad() 0.000000e+00s
Time since theano import 520.661s
Class
---
<% time> <sum %> <apply time> <time per call> <type> <#call> <#apply> 
<Class name>
  58.2%    58.2%       0.001s       7.00e-04s     Py       1       1   
theano.scan_module.scan_op.Scan
  27.3%    85.4%       0.000s       1.64e-04s     Py       2       2   
theano.sandbox.cuda.basic_ops.GpuFromHost
   6.1%    91.5%       0.000s       7.30e-05s     Py       1       1   
theano.sandbox.cuda.basic_ops.HostFromGpu
   5.5%    97.0%       0.000s       6.60e-05s     C        1       1   
theano.sandbox.cuda.basic_ops.GpuIncSubtensor
   1.1%    98.0%       0.000s       3.22e-06s     C        4       4   
theano.tensor.elemwise.Elemwise
   0.7%    98.8%       0.000s       8.82e-06s     C        1       1   
theano.sandbox.cuda.basic_ops.GpuSubtensor
   0.7%    99.4%       0.000s       7.87e-06s     C        1       1   
theano.sandbox.cuda.basic_ops.GpuAllocEmpty
   0.3%    99.7%       0.000s       3.81e-06s     C        1       1   
theano.compile.ops.Shape_i
   0.3%   100.0%       0.000s       1.55e-06s     C        2       2   
theano.tensor.basic.ScalarFromTensor
   ... (remaining 0 Classes account for   0.00%(0.00s) of the runtime)

Ops
---
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<% time> <sum %> <apply time> <time per call> <type> <#call> <#apply> 
<Op name>
  58.2%    58.2%       0.001s       7.00e-04s     Py       1        1   
forall_inplace,gpu,scan_fn}
  27.3%    85.4%       0.000s       1.64e-04s     Py       2        2   
GpuFromHost
   6.1%    91.5%       0.000s       7.30e-05s     Py       1        1   
HostFromGpu
   5.5%    97.0%       0.000s       6.60e-05s     C        1        1   
GpuIncSubtensor{InplaceSet;:int64:}
   0.7%    97.7%       0.000s       8.82e-06s     C        1        1   
GpuSubtensor{int64:int64:int16}
   0.7%    98.4%       0.000s       7.87e-06s     C        1        1   
GpuAllocEmpty
   0.3%    98.7%       0.000s       4.05e-06s     C        1        1   
Elemwise{switch,no_inplace}
   0.3%    99.0%       0.000s       4.05e-06s     C        1        1   
Elemwise{le,no_inplace}
   0.3%    99.3%       0.000s       3.81e-06s     C        1        1   
Shape_i{0}
   0.3%    99.6%       0.000s       1.55e-06s     C        2        2   
ScalarFromTensor
   0.2%    99.8%       0.000s       2.86e-06s     C        1        1   
Elemwise{Composite{Switch(LT(i0, i1), i0, i1)}}
   0.2%   100.0%       0.000s       1.91e-06s     C        1        1   
Elemwise{Composite{Switch(i0, i1, minimum(i2, i3))}}[(0, 2)]
   ... (remaining 0 Ops account for   0.00%(0.00s) of the runtime)

Apply
------
<% time> <sum %> <apply time> <time per call> <#call> <id> <Apply 
name>
  58.2%    58.2%       0.001s       7.00e-04s      1    12   forall_
inplace,gpu,scan_fn}(TensorConstant{10}, GpuSubtensor{int64:int64:i
nt16}.0, GpuIncSubtensor{InplaceSet;:int64:}.0, GpuFromHost.0)
  21.9%    80.1%       0.000s       2.64e-04s      1     3   GpuFromHo
st(<TensorType(float32, vector)>)
   6.1%    86.2%       0.000s       7.30e-05s      1    13   
HostFromGpu(forall_inplace,gpu,scan_fn}.0)
   5.5%    91.6%       0.000s       6.60e-05s      1     4   GpuIncS
ubtensor{InplaceSet;:int64:}(GpuAllocEmpty.0, CudaNdarrayConstant{[ 
0.]}, Constant{1})
   5.3%    97.0%       0.000s       6.41e-05s      1     0   
GpuFromHost(s0)
   0.7%    97.7%       0.000s       8.82e-06s      1    11   
GpuSubtensor{int64:int64:int16}(GpuFromHost.0, ScalarFromTensor.0, 
ScalarFromTensor.0, Constant{1})
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   0.7%    98.4%       0.000s       7.87e-06s      1     1   GpuAllocE
mpty(TensorConstant{10})
   0.3%    98.7%       0.000s       4.05e-06s      1     8   
Elemwise{switch,no_inplace}(Elemwise{le,no_inplace}.0, 
TensorConstant{0}, TensorConstant{0})
   0.3%    99.0%       0.000s       4.05e-06s      1     6   
Elemwise{le,no_inplace}(Elemwise{Composite{Switch(LT(i0, i1), i0, 
i1)}}.0, TensorConstant{0})
   0.3%    99.3%       0.000s       3.81e-06s      1     2   
Shape_i{0}(<TensorType(float32, vector)>)
   0.3%    99.6%       0.000s       3.10e-06s      1    10   ScalarFro
mTensor(Elemwise{switch,no_inplace}.0)
   0.2%    99.8%       0.000s       2.86e-06s      1     5   Ele
mwise{Composite{Switch(LT(i0, i1), i0, i1)}}(TensorConstant{10}, 
Shape_i{0}.0)
   0.2%   100.0%       0.000s       1.91e-06s      1     7   
Elemwise{Composite{Switch(i0, i1, minimum(i2, i3))}}[(0, 2)]
(Elemwise{le,no_inplace}.0, TensorConstant{0}, Elemwise{Composite{Swit
ch(LT(i0, i1), i0, i1)}}.0, Shape_i{0}.0)
   0.0%   100.0%       0.000s       0.00e+00s      1     9   Scalar
FromTensor(Elemwise{Composite{Switch(i0, i1, minimum(i2, i3))}}[(0, 
2)].0)
   ... (remaining 0 Apply instances account for 0.00%(0.00s) of the 
runtime)

Summary
The first concept is symbolic computing, which consists in building graph, that can 
be compiled and then executed wherever we decide in the Python code. A compiled 
graph is acting as a function that can be called anywhere in the code. The purpose of 
symbolic computing is to have an abstraction of the architecture on which the graph 
will be executed, and which libraries to compile it with. As presented, symbolic 
variables are typed for the target architecture during compilation.

The second concept is the tensor, and the operators provided to manipulate tensors. 
Most of these were already available in CPU-based computation libraries, such as 
NumPy or SciPy. They have simply been ported to symbolic computing, requiring 
their equivalents on GPU. They use underlying acceleration libraries, such as BLAS, 
Nvidia Cuda, and cuDNN.
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The last concept introduced by Theano is automatic differentiation—a very useful 
feature in deep learning to backpropagate errors and adjust the weights following 
the gradients, a process known as gradient descent. Also, the scan operator enables us 
to program loops (while..., for...,) on the GPU, and, as other operators, available 
through backpropagation as well, simplifying the training of models a lot.

We are now ready to apply this to deep learning in the next few chapters and have a 
look at this knowledge in practice.



Classifying Handwritten Digits 
with a Feedforward Network

The first chapter presented Theano as a compute engine, with its different functions 
and specificities. With this knowledge, we'll go through an example and introduce 
some of the main concepts of deep learning, building three neural networks and 
training them on the problem of handwritten digit classification.

Deep learning is a field of machine learning in which layers of modules are  
stacked on top of each of other: this chapter introduces a simple single-linear-layer 
model, then adds a second layer on top of it to create a multi-layer perceptron 
(MLP), and last uses multiple convolutional layers to create a Convolutional  
Neural Network (CNN).

In the meantime, this chapter recaps the basic machine learning concepts, such  
as overfitting, validation, and loss analysis, for those who are not familiar with  
data science:

• Small image classification
• Handwritten digit recognition challenge
• Layer design to build a neural network
• Design of a classical objective/loss function
• Back-propagation with stochastic gradient descent
• Training on a dataset with validation
• Convolutional neural networks
• Towards state-of-art results for digit classification
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The MNIST dataset
The Modified National Institute of Standards and Technology (MNIST) dataset is 
a very well-known dataset of handwritten digits {0,1,2,3,4,5,6,7,8,9} used to train and 
test classification models.

A classification model is a model that predicts the probabilities of observing a class, 
given an input.

Training is the task of learning the parameters to fit the model to the data as well as 
we can so that for any input image, the correct label is predicted. For this training 
task, the MNIST dataset contains 60,000 images with a target label (a number 
between 0 and 9) for each example.

To validate that the training is efficient and to decide when to stop the training,  
we usually split the training dataset into two datasets: 80% to 90% of the images  
are used for training, while the remaining 10-20% of images will not be presented 
to the algorithm for training but to validate that the model generalizes well on 
unobserved data.

There is a separate dataset that the algorithm should never see during training, 
named the test set, which consists of 10,000 images in the MNIST dataset.

In the MNIST dataset, the input data of each example is a 28x28 normalized 
monochrome image and a label, represented as a simple integer between 0 and 9 for 
each example. Let's display some of them:

1. First, download a pre-packaged version of the dataset that makes it easier to 
load from Python:
wget http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz 
-P /sharedfiles

2. Then load the data into a Python session:
import pickle, gzip
with gzip.open("/sharedfiles/mnist.pkl.gz", 'rb') as f:
   train_set, valid_set, test_set = pickle.load(f)

For Python3, we need pickle.load(f, encoding='latin1') due to the 
way it was serialized.

train_set[0].shape
(50000, 784)

train_set[1].shape
(50000,)
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import matplotlib

import numpy 

import matplotlib.pyplot as plt

plt.rcParams['figure.figsize'] = (10, 10)

plt.rcParams['image.cmap'] = 'gray'

for i in range(9):
    plt.subplot(1,10,i+1)
    plt.imshow(train_set[0][i].reshape(28,28))
    plt.axis('off')
    plt.title(str(train_set[1][i]))

plt.show()

The first nine samples from the dataset are displayed with the corresponding label 
(the ground truth, that is, the correct answer expected by the classification algorithm) 
on top of them:

In order to avoid too many transfers to the GPU, and since the complete dataset is 
small enough to fit in the memory of the GPU, we usually place the full training set 
in shared variables:

import theano
train_set_x = theano.shared(numpy.asarray(train_set[0], dtype=theano.
config.floatX))
train_set_y = theano.shared(numpy.asarray(train_set[1], 
dtype='int32'))

Avoiding these data transfers allows us to train faster on the GPU, despite recent 
GPU and fast PCIe connections.

More information on the dataset is available at http://yann.lecun.com/exdb/
mnist/.

http://yann.lecun.com/exdb/mnist/
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Structure of a training program
The structure of a training program always consists of the following steps:

1. Set the script environment: Such as package imports, the use of the GPU, 
and so on.

2. Load data: A data loader class to access the data during training, usually in 
a random order to avoid too many similar examples of the same class, but 
sometimes in a precise order, for example, in the case of curriculum learning 
with simple examples first and complex ones last.

3. Preprocess the data: A set of transformations, such as swapping dimensions 
on images, adding blur or noise. It is very common to add some data 
augmentation transformations, such as random crop, scale, brightness, or 
contrast jittering to get more examples than the original ones, and reduce the 
risk of overfitting on data. If the number of free parameters in the model is 
too important with respect to the training dataset size, the model might learn 
from the available examples. Also, if the dataset is too small and too many 
iterations have been executed on the same data, the model might become 
too specific to the training examples and not generalize well on new unseen 
examples.

4. Build a model: Defining the model structure with the parameter in persistent 
variables (shared variables) to update their values during training in order to 
fit the training data

5. Train: There are different algorithms either training on the full dataset as 
a whole or training on each example step by step. The best convergence is 
usually achieved by training on a batch, a small subset of examples grouped 
together, from a few tens to a few hundreds.
Another reason to use a batch is to improve the training speed of the 
GPU, because individual data transfers are costly and GPU memory is not 
sufficient to host the full dataset as well. The GPU is a parallel architecture, 
so processing a batch of examples is usually faster than processing the 
examples one by one, up to a certain point. Seeing more examples at the same 
time accelerates the convergence (in wall-time), up to a certain point. This is 
true even if the GPU memory is large enough to host the whole dataset: the 
diminishing returns on the batch size make it usually faster to have smaller 
batches than the whole dataset. Note that this is true for modern CPUs as 
well, but the optimal batch size is usually smaller.

An iteration defines a training on one batch. An epoch is a number of 
iterations required for the algorithm to see the full dataset.
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6. During training, after a certain number of iterations, there is usually a 
validation using a split of the training data or a validation dataset that has 
not been used for learning. The loss is computed on this validation set. 
Though the algorithm has the objective to reduce the loss given the training 
data, it does not ensure generalization with unseen data. Validation data 
is unseen data used to estimate the generalization performance. A lack of 
generalization might occur when the training data is not representative, or is 
an exception and has not been sampled correctly, or if the model overfits the 
training data.
Validation data verifies everything is OK, and stops training when validation 
loss does not decrease any more, even if training loss might continue to 
decrease: further training is not worth it any more and leads to overfitting.

7. Saving model parameters and displaying results, such as best training/
validation loss values, train loss curves for convergence analysis.

In the case of classification, we compute the accuracy (the percentage of 
correct classification) or the error (the percentage of misclassification) during 
training, as well as the loss. At the end of training, a confusion matrix helps 
evaluate the quality of the classifier.
Let's see these steps in practice and start a Theano session in a Python  
shell session:

from theano import theano
import theano.tensor as T

Classification loss function
The loss function is an objective function to minimize during training to get the best 
model. Many different loss functions exist.

In a classification problem, where the target is to predict the correct class among k 
classes, cross-entropy is commonly used as it measures the difference between the 
real probability distribution, q, and the predicted one, p, for each class:

( ) ( )
1 1

log
n k

i i
i c

q c p c
= =
∑∑

Here, i is the index of the sample in the dataset, n is the number of samples in the 
dataset, and k is the number of classes.
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While the real probability ( )| iq c x  of each class is unknown, it can simply be 
approximated in practice by the empirical distribution, that is, randomly drawing a 
sample out of the dataset in the dataset order. The same way, the cross-entropy of 
any predicted probability, p, can be approximated by the empirical cross-entropy:

( )
1

1 log
N

i
i

cross entropy p p
n =

− = ∑

Here, ip  is the probability estimated by the model for the correct class of  
example ix .

Accuracy and cross-entropy both evolve in the same direction but measure  
different things. Accuracy measures how much the predicted class is correct,  
while cross-entropy measure the distance between the probabilities. A decrease  
in cross-entropy explains that the probability to predict the correct class gets better, 
but the accuracy may remain constant or drop.

While accuracy is discrete and not differentiable, the cross-entropy loss is a 
differentiable function that can be easily used for training a model.

Single-layer linear model
The simplest model is the linear model, where for each class c, the output is a linear 
combination of the input values:

:c c co x W x b→ +

This output is unbounded.

To get a probability distribution, p
i
, that sums to 1, the output of the linear model is 

passed into a softmax function:
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softmax
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Hence, the estimated probability of class c for an input x is rewritten with vectors:

( )p Wx b= +softmax

Translated in Python with:

batch_size = 600
n_in = 28 * 28
n_out = 10

x = T.matrix('x')
y = T.ivector('y')
W = theano.shared(
            value=numpy.zeros(
                (n_in, n_out),
                dtype=theano.config.floatX
            ),
            name='W',
            borrow=True
        )
b = theano.shared(
    value=numpy.zeros(
        (n_out,),
        dtype=theano.config.floatX
    ),
    name='b',
    borrow=True
)
model = T.nnet.softmax(T.dot(x, W) + b)

The prediction for a given input is given by the most probable class (maximum 
probability):

y_pred = T.argmax(model, axis=1)
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In this model with a single linear layer, information moves from input to output: it is 
a feedforward network. The process to compute the output given the input is called 
forward propagation.

This layer is said fully connected because all outputs, co , are the sum of (are linked 
to) all inputs values through a multiplicative coefficient:

Cost function and errors
The cost function given the predicted probabilities by the model is as follows:

cost = -T.mean(T.log(model)[T.arange(y.shape[0]), y])

The error is the number of predictions that are different from the true class, averaged 
by the total number of values, which can be written as a mean:

error = T.mean(T.neq(y_pred, y))

On the contrary, accuracy corresponds to the number of correct predictions divided 
by the total number of predictions. The sum of error and accuracy is one.
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For other types of problems, here are a few other loss functions and implementations:

Categorical cross entropy
An equivalent implementation 
of ours

T.nnet.categorical_
crossentropy(model, y_true).
mean()

Binary cross entropy
For the case when output can 
take only two values {0,1}
Typically used after a sigmoid 
activation predicting the 
probability, p

T.nnet.binary_crossentropy(model, 
y_true).mean()

Mean squared error
L2 norm for regression problems

T.sqr(model – y_true).mean()

Mean absolute error
L1 norm for regression problems

T.abs_(model - y_true).mean()

Smooth L1
A mix between L1 for large 
values, and L2 for small values
Known as an outlier resistant 
loss for regressions

T.switch(
   T.lt(T.abs_(model - y_true) , 
1. / sigma), 
   0.5 * sigma * T.sqr(model - 
y_true),
   T.abs_(model - y_true) – 0.5 
/ sigma )
.sum(axis=1).mean()

Squared hinge loss
Particularly used in 
unsupervised problems

T.sqr(T.maximum(1. - y_true * 
model, 0.)).mean()

Hinge loss T.maximum(1. - y_true * model, 
0.).mean()

Backpropagation and stochastic gradient 
descent
Backpropagation, or the backward propagation of errors, is the most commonly used 
supervised learning algorithm for adapting the connection weights. 
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Considering the error or the cost as a function of the weights W and b, a local 
minimum of the cost function can be approached with a gradient descent, which 
consists of changing weights along the negative error gradient:

EW W
w

λ ∂← −
∂

Here, λ  is the learning rate, a positive constant defining the speed of a descent.

The following compiled function updates the variables after each feedforward run:

g_W = T.grad(cost=cost, wrt=W)
g_b = T.grad(cost=cost, wrt=b)

learning_rate=0.13
index = T.lscalar()

train_model = theano.function(
    inputs=[index],
    outputs=[cost,error],
    updates=[(W, W - learning_rate * g_W),(b, b - learning_rate * 
g_b)],
    givens={
        x: train_set_x[index * batch_size: (index + 1) * batch_size],
        y: train_set_y[index * batch_size: (index + 1) * batch_size]
    }
)

The input variable is the index of the batch, since all the dataset has been transferred 
in one pass to the GPU in shared variables.

Training consists of presenting each sample to the model iteratively (iterations) and 
repeating the operation many times (epochs):

n_epochs = 1000
print_every = 1000

n_train_batches = train_set[0].shape[0] // batch_size
n_iters = n_epochs * n_train_batches
train_loss = np.zeros(n_iters)
train_error = npzeros(n_iters)
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for epoch in range(n_epochs):
    for minibatch_index in range(n_train_batches):
        iteration = minibatch_index + n_train_batches * epoch
        train_loss[iteration], train_error[iteration] = train_
model(minibatch_index)
        if (epoch * train_set[0].shape[0] + minibatch_index) % print_
every == 0 :
            print('epoch {}, minibatch {}/{}, training error {:02.2f} 
%, training loss {}'.format(
                epoch,
                minibatch_index + 1,
                n_train_batches,
                train_error[iteration] * 100,
                train_loss[iteration]
            ))

This only reports the loss and error on one mini-batch, though. It would be good to 
also report the average over the whole dataset.

The error rate drops very quickly during the first iterations, then slows down.

Execution time on a GPU GeForce GTX 980M laptop is 67.3 seconds, while on an 
Intel i7 CPU, it is 3 minutes and 7 seconds.

After a long while, the model converges to a 5.3 - 5.5% error rate, and with a few 
more iterations could go further down, but could also lead to overfitting, Overfitting 
occurs when the model fits the training data well but does not get the same error rate 
on unseen data.

In this case, the model is too simple to overfit on this data.

A model that is too simple cannot learn very well. The principle of deep learning 
is to add more layers, that is, increase the depth and build deeper networks to gain 
better accuracy.

We'll see in the following section how to compute a better estimation of the model 
accuracy and the training stop.
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Multiple layer model
A multi-layer perceptron (MLP) is a feedforward net with multiple layers. A second 
linear layer, named hidden layer, is added to the previous example:

Having two linear layers following each other is equivalent to having a single  
linear layer.

With a non-linear function or non-linearity or transfer function between the linearities, 
the model does not simplify into a linear one any more, and represents more possible 
functions in order to capture more complex patterns in the data:
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Activation functions helps saturating (ON-OFF) and reproduces the biological 
neuron activations.

The Rectified Linear Unit (ReLU) graph is given as follows:

(x + T.abs_(x)) / 2.0
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The Leaky Rectifier Linear Unit (Leaky ReLU) graph is given as follows:

( (1 + leak) * x + (1 – leak) * T.abs_(x) ) / 2.0

Here, leak is a parameter that defines the slope in the negative values. In leaky 
rectifiers, this parameter is fixed.

The activation named PReLU considers the leak parameter to be learned.
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More generally speaking, a piecewise linear activation can be learned by adding a 
linear layer followed by a maxout activation of n_pool units:

T.max([x[:, n::n_pool] for n in range(n_pool)], axis=0)

This will output n_pool values or units for the underlying learned linearities:

Sigmoid (T.nnet.sigmoid)
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HardSigmoid function is given as:

T.clip(X + 0.5, 0., 1.)

HardTanh function is given as:

T.clip(X, -1., 1.)
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Tanh function is given as:

T.tanh(x)

This two-layer network model written in Python will be as follows:

batch_size = 600
n_in = 28 * 28
n_hidden = 500
n_out = 10

def shared_zeros(shape, dtype=theano.config.floatX, name='', n=None):
    shape = shape if n is None else (n,) + shape
    return theano.shared(np.zeros(shape, dtype=dtype), name=name)

def shared_glorot_uniform(shape, dtype=theano.config.floatX, name='', 
n=None):
    if isinstance(shape, int):
        high = np.sqrt(6. / shape)
    else:
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        high = np.sqrt(6. / (np.sum(shape[:2]) * np.prod(shape[2:])))
    shape = shape if n is None else (n,) + shape
    return theano.shared(np.asarray(
        np.random.uniform(
            low=-high,
            high=high,
            size=shape),
        dtype=dtype), name=name)

W1 = shared_glorot_uniform( (n_in, n_hidden), name='W1' )
b1 = shared_zeros( (n_hidden,), name='b1' )

hidden_output = T.tanh(T.dot(x, W1) + b1)

W2 = shared_zeros( (n_hidden, n_out), name='W2' )
b2 = shared_zeros( (n_out,), name='b2' )

model = T.nnet.softmax(T.dot(hidden_output, W2) + b2)
params = [W1,b1,W2,b2]

In deep nets, if weights are initialized to zero with the shared_zeros method,  
the signal will not flow through the network correctly from end to end. If weights  
are initialized with values that are too big, after a few steps, most activation 
functions saturate. So, we need to ensure that the values can be passed to the next 
layer during propagation, as well as for the gradients to the previous layer during  
back-propagation.

We also need to break the symmetry between neurons. If the weights of all neurons 
are zero (or if they are all equal), they will all evolve exactly in the same way, and the 
model will not learn much.

The researcher Xavier Glorot studied an algorithm to initialize weights in an optimal 
way. It consists in drawing the weights from a Gaussian or uniform distribution of 
zero mean and the following variance:

( )2 / in outv n n= +

Here are the variables from the preceding formula:

• n
in

 is the number of inputs the layer receives during feedforward 
propagation

• n
out

 is the number of gradients the layer receives during back-propagation
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In the case of a linear model, the shape parameter is a tuple, and v is simply numpy.
sum( shape[:2] ) (in this case, numpy.prod(shape[2:]) is 1).

The variance of a uniform distribution on [-a, a] is given by a**2 / 3, then the bound a 
can be computed as follows:

( )
6

in outn n+

The cost can be defined the same way as before, but the gradient descent needs to be 
adapted to deal with the list of parameters, [W1,b1,W2,b2]:

g_params = T.grad(cost=cost, wrt=params)

The training loop requires an updated training function:

learning_rate = 0.01
updates = [
        (param, param - learning_rate * gparam)
        for param, gparam in zip(params, g_params)
    ]

train_model = theano.function(
    inputs=[index],
    outputs=cost,
    updates=updates,
    givens={
        x: train_set_x[index * batch_size: (index + 1) * batch_size],
        y: train_set_y[index * batch_size: (index + 1) * batch_size]
    }
)

In this case, learning rate is global to the net, with all weights being updated at 
the same rate. The learning rate is set to 0.01 instead of 0.13. We'll speak about 
hyperparameter tuning in the training section.

The training loop remains unchanged. The full code is given in the 2-multi.py file.

Execution time on the GPU is 5 minutes and 55 seconds, while on the CPU it is 51 
minutes and 36 seconds.

After 1,000 iterations, the error has dropped to 2%, which is a lot better than the 
previous 5% error rate, but part of it might be due to overfitting. We'll compare the 
different models later.
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Convolutions and max layers
A great improvement in image classification has been achieved with the invention of 
the convolutional layers on the MNIST database:
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While previous fully-connected layers perform a computation with all input values 
(pixels in the case of an image) of the input, a 2D convolution layer will consider 
only a small patch or window or receptive field of NxN pixels of the 2D input image 
for each output unit. The dimensions of the patch are named kernel dimensions, N is 
the kernel size, and the coefficients/parameters are the kernel.

At each position of the input image, the kernel produces a scalar, and all position 
values will lead to a matrix (2D tensor) called a feature map. Convolving the kernel on 
the input image as a sliding window creates a new output image. The stride of the 
kernel defines the number of pixels to shift the patch/window over the image: with a 
stride of 2, the convolution with the kernel is computed every 2 pixels.

For example, on a 224 x 224 input image, we get the following:

• A 2x2 kernel with stride 1 outputs a 223 x 223 feature map
• A 3x3 kernel with stride 1 outputs a 222 x 222 feature map

In order to keep the output feature map the same dimension as the input image, 
there is a type of zero-padding called same or half that enables the following:

• Add a line and a column of zeros at the end of the input image in the case of 
a 2x2 kernel with stride 1

• Add two lines and two columns of zeros, one in front and one at the end of 
the input image vertically and horizontally in the case of a 3x3 kernel with 
stride 1

So, the output dimensions are the same as the original ones, that is, a 224 x 224 
feature map.

With zero padding:

• A 2x2 kernel with stride 2 and zero padding will output a 112 x 112  
feature map

• A 3x3 kernel with stride 2 will output a 112 x 112 feature map

Without zero-padding, it gets more complicated:

• A 2x2 kernel with stride 2 will output a 112 x 112 feature map
• A 3x3 kernel with stride 2 will output a 111 x 111 feature map

Note that kernel dimensions and strides can be different for each dimension. In this 
case, we say kernel width, kernel height, stride width, or stride height.
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In one convolutional layer, it is possible to output multiple feature maps, each 
feature map being computed with a different kernel (and kernel weights) and 
representing one feature. We say outputs, neurons, kernels, features, feature 
maps, units, or output channels indifferently to give the number of these different 
convolutions with different kernels. To be precise, neuron usually refers to a specific 
position within a feature map. Kernels are the kernels themselves, and the other ones 
refer to the result of the convolution operation. The number of them is the same, 
which is why these words are often used to describe the same thing. I'll use the 
words channels, outputs, and features.

The usual convolution operators can be applied to multi-channel inputs. This enables 
to apply them to three-channel images (RGB images, for example) or to the output of 
another convolution in order to be chained.

Let's include two convolutions with a kernel size of 5 in front of the previous  
MLP mode:

The 2D convolution operator requires a 4D tensor input. The first dimension is the 
batch size, the second the number of inputs or input channels (in the "channel-first 
format"), and the third and fourth the two dimensions of the feature map (in the 
"channel-last format", channels are the last dimension). MNIST gray images (one 
channel) stored in a one-dimensional vector need to be converted into a 28x28 
matrix, where 28 is the image height and width:

layer0_input = x.reshape((batch_size, 1, 28, 28))
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Then, adding a first convolution layer of 20 channels on top of the transformed input, 
we get this:

from theano.tensor.nnet import conv2d

n_conv1 = 20

W1 = shared_glorot_uniform( (n_conv1, 1, 5, 5) )

conv1_out = conv2d(
    input=layer0_input,
    filters=W1,
    filter_shape=(n_conv1, 1, 5, 5),
    input_shape=(batch_size, 1, 28, 28)
)

In this case, the Xavier initialization (from the name of its inventor, Xavier Glorot) 
multiplies the number of input/output channels by the number of parameters in 
the kernel, numpy.prod(shape[2:]) = 5 x 5 = 25, to get the total number of 
incoming input/output gradients in the initialization formula.

The 20 kernels of size 5x5 and stride 1 on 28x28 inputs will produce 20 feature maps 
of size 24x24. So the first convolution output is (batch_size,20,24,24).

Best performing nets use max pooling layers to encourage translation invariance 
and stability to noise. A max-pooling layer performs a maximum operation over a 
sliding window/patch to keep only one value out of the patch. As well as increasing 
speed performance, it reduces the size of the feature maps, and the total computation 
complexity and training time decreases:

from theano.tensor.signal import pool
pooled_out = pool.pool_2d(input=conv1_out, ws=(2, 2), ignore_
border=True)

The output of the 2x2 max pooling layer will be (batch_size,20,12,12). The  
batch size and the number of channels stay constant. Only the feature map's size  
has changed.

Adding a second convolutional layer of 50 channels and max pooling layer on top of 
the previous one leads to an output of size (batch_size,50,4,4):

n_conv2 = 50

W2 = shared_glorot_uniform( (n_conv2, n_conv1, 5, 5) )

conv2_out = conv2d(
    input=pooled_out,
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    filters=W2,
    filter_shape=(n_conv2, n_conv1, 5, 5),
    input_shape=(batch_size, n_conv1, 12, 12)
)

pooled2_out = pool.pool_2d(input=conv2_out, ds=(2, 2),ignore_
border=True)

To create a classifier, we connect on top the MLP with its two fully-connected linear 
layers and a softmax, as seen before:

hidden_input = pooled2_out.flatten(2)

n_hidden = 500

W3 = shared_zeros( (n_conv2 * 4 * 4, n_hidden), name='W3' )
b3 = shared_zeros( (n_hidden,), name='b3' )

hidden_output = T.tanh(T.dot(hidden_input, W3) + b3)

n_out = 10

W4 = shared_zeros( (n_hidden, n_out), name='W4' )
b4 = shared_zeros( (n_out,), name='b4' )

model = T.nnet.softmax(T.dot(hidden_output, W4) + b4)
params = [W1,W2,W3,b3,W4,b4]

Such a model is named a Convolutional Neural Net (CNN).

The full code is given in the 3-cnn.py file.

Training is much slower because the number of parameters has been multiplied 
again, and the use of the GPU makes a lot more sense: total training time on the  
GPU has increased to 1 hour, 48 min and 27 seconds. Training on the CPU would 
take days.

The training error is zero after a few iterations, part of it due to overfitting. Let's see 
in the next section how to compute a testing loss and accuracy that better explains 
the model's efficiency.

Training
In order to get a good measure of how the model behaves on data that's unseen 
during training, the validation dataset is used to compute a validation loss and 
accuracy during training.
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The validation dataset enables us to choose the best model, while the test dataset is 
only used at the end to get the final test accuracy/error of the model. The training, 
test, and validation datasets are discrete datasets, with no common examples. 
The validation dataset is usually 10 times smaller than the test dataset to slow the 
training process as little as possible. The test dataset is usually around 10-20% of the 
training dataset. Both the training and validation datasets are part of the training 
program, since the first one is used to learn, and the second is used to select the best 
model on unseen data at training time.

The test dataset is completely outside the training process and is used to get the 
accuracy of the produced model, resulting from training and model selection.

If the model overfits the training set because it has been trained too many times on 
the same images, for example, then the validation and test sets will not suffer from 
this behavior and will provide a real estimation of the model's accuracy.

Usually, a validation function is compiled without a gradient update of the model to 
simply compute only the cost and error on the input batch.

Batches of data (x,y) are commonly transferred to the GPU at every iteration because 
the dataset is usually too big to fit in the GPU's memory. In this case, we could still 
use the trick with the shared variables to place the whole validation dataset in the 
GPU's memory, but let's see how we would do if we had to transfer the batches to 
the GPU at each step and not use the previous trick. We would use the more  
usual form:

validate_model = theano.function(
    inputs=[x,y],
    outputs=[cost,error]
)

It requires the transfer of batch inputs. Validation is computed not at every iteration, 
but at validation_interval iterations in the training for loop:

if iteration % validation_interval == 0 :
    val_index = iteration // validation_interval
    valid_loss[val_index], valid_error[val_index] = np.mean([
            validate_model(
                valid_set[0][i * batch_size: (i + 1) * batch_size],
                numpy.asarray(valid_set[1][i * batch_size: (i + 1) * 
batch_size], dtype="int32")
                )
                for i in range(n_valid_batches)
             ], axis=0)
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Let's see the simple first model:

epoch 0, minibatch 1/83, validation error 40.05 %, validation loss 
2.16520105302

epoch 24, minibatch 9/83, validation error 8.16 %, validation loss 
0.288349323906
epoch 36, minibatch 13/83, validation error 7.96 %, validation loss 
0.278418215923
epoch 48, minibatch 17/83, validation error 7.73 %, validation loss 
0.272948684171
epoch 60, minibatch 21/83, validation error 7.65 %, validation loss 
0.269203903154
epoch 72, minibatch 25/83, validation error 7.59 %, validation loss 
0.26624627877
epoch 84, minibatch 29/83, validation error 7.56 %, validation loss 
0.264540277421
...
epoch 975, minibatch 76/83, validation error 7.10 %, validation loss 
0.258190142922
epoch 987, minibatch 80/83, validation error 7.09 %, validation loss 
0.258411859162

In a full training program, a validation interval corresponding to the total number of 
epochs, with an average validation score for the epoch, would make more sense.

To better estimate how the training performs, let's plot the training and valid loss. In 
order to display the descent in early iterations, I'll stop the drawing at 100 iterations. 
If I use 1,000 iterations in the plot, I won't see the early iterations:
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The training loss looks like a wide band because it oscillates between different 
values. Each of the values corresponds to one batch. The batch might be too small to 
provide a stable loss value. The mean value of the training loss over the epoch would 
provide a more stable value to compare with the valid loss and show overfitting.

Also note that the loss plot provides information on how the network converges, but 
does not give any valuable information on the error. So, it is also very important to 
plot the training error and the valid error.

For the second model:

epoch 0, minibatch 1/83, validation error 41.25 %, validation loss 
2.35665753484
epoch 24, minibatch 9/83, validation error 10.20 %, validation loss 
0.438846310601
epoch 36, minibatch 13/83, validation error 9.40 %, validation loss 
0.399769391865
epoch 48, minibatch 17/83, validation error 8.85 %, validation loss 
0.379035864025
epoch 60, minibatch 21/83, validation error 8.57 %, validation loss 
0.365624915808
epoch 72, minibatch 25/83, validation error 8.31 %, validation loss 
0.355733696371
epoch 84, minibatch 29/83, validation error 8.25 %, validation loss 
0.348027150147
epoch 96, minibatch 33/83, validation error 8.01 %, validation loss 
0.34150374867
epoch 108, minibatch 37/83, validation error 7.91 %, validation loss 
0.335878048092
...
epoch 975, minibatch 76/83, validation error 2.97 %, validation loss 
0.167824191041
epoch 987, minibatch 80/83, validation error 2.96 %, validation loss 
0.167092795949
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Again, the training curves give better insights:

For the third model:

epoch 0, minibatch 1/83, validation error 53.81 %, validation loss 
2.29528842866
epoch 24, minibatch 9/83, validation error 1.55 %, validation loss 
0.048202780541
epoch 36, minibatch 13/83, validation error 1.31 %, validation loss 
0.0445762014715
epoch 48, minibatch 17/83, validation error 1.29 %, validation loss 
0.0432346871821
epoch 60, minibatch 21/83, validation error 1.25 %, validation loss 
0.0425786205451
epoch 72, minibatch 25/83, validation error 1.20 %, validation loss 
0.0413943211024
epoch 84, minibatch 29/83, validation error 1.20 %, validation loss 
0.0416557886347
epoch 96, minibatch 33/83, validation error 1.19 %, validation loss 
0.0414686980075
...
epoch 975, minibatch 76/83, validation error 1.08 %, validation loss 
0.0477593478863
epoch 987, minibatch 80/83, validation error 1.08 %, validation loss 
0.0478142946085
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Refer to the following graph:

Here we see the difference between train and valid, losses either due to a slight 
overfitting to the training data, or a difference between the training and test datasets.

The main causes of overfitting are as follows:

• Too small a dataset: Collect more data
• Too high a learning rate: The network is learning too quickly on  

earlier examples
• A lack of regularization: Add more dropout (see next section), or a penalty 

on the norm of the weights in the loss function
• Too small model: Increase the number of filters/units in different layers

Validation loss and error gives a better estimate than training loss and error, which 
are more noisy, and during training, they are also used to decide which model 
parameters are the best:

• Simple model: 6.96 % at epoch 518
• MLP model: 2.96 % at epoch 987
• CNN model: 1.06 % at epoch 722
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These results also indicate that the models might not improve much with  
further training.

Here's a comparison of the three models' validation losses:

Note that the MLP is still improving and the training has not finished, while the 
CNN and simple networks have converged.

With the selected model, you can easily compute the test loss and error on the test 
dataset to finalize it.

The last important concept of machine learning is hyperparameter tuning.  
An hyperparameter defines a parameter of the model that is not learned  
during training. Here are examples:

learning rate
number of hidden neurons
batch size

For the learning rate, too slow a descent might prevent finding a more global 
minimum, while too fast a descent damages the final convergence. Finding the best 
initial learning rate is crucial. Then, it is common to decrease the learning rate after 
many iterations in order to have more precise fine-tuning of the model.
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Hyperparameter selection requires us to run the previous runs many times for 
different values of the hyperparameters; testing all combinations of hyperparameters 
can be done in a simple grid search, for example.

Here is an exercise for the reader:

• Train the models with different hyperparameters and draw the training loss 
curves to see how hyperparameters influence the final loss.

• Visualize the content of the neurons of the first layer, once the model has 
been trained, to see what the features capture from the input image. For this 
task, compile a specific visualization function:

visualize_layer1 = theano.function(
    inputs=[x,y],
    outputs=conv1_out
)

Dropout
Dropout is a widely used technique to improve convergence and robustness of 
a neural net and prevent neural nets from overfitting. It consists of setting some 
random values to zero for the layers on which we'd like it to apply. It introduces 
some randomness in the data at every epoch.

Usually, dropout is used before the fully connected layers and not used very often 
in convolutional layers. Let's add the following lines before each of our two fully 
connected layers:

dropout = 0.5

if dropout > 0 :
    mask = srng.binomial(n=1, p=1-dropout, size=hidden_input.shape)
    # The cast is important because
    # int * float32 = float64 which make execution slower
    hidden_input = hidden_input * T.cast(mask, theano.config.floatX)

The full script is in 5-cnn-with-dropout.py. After 1,000 iterations, the validation 
error of the CNN with dropout continues to drops down to 1.08%, while the 
validation error of the CNN without dropout will not go down by 1.22%.

Readers who would like to go further with dropout should have a look at maxout 
units. They work well with dropout and replace the tanh non-linearities to get even 
better results. As dropout does a kind of model averaging, maxout units try to find 
the optimal non-linearity to the problem.
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Inference
Inference is the process of using the model to produce predictions.

For inference, the weight parameters do not need to be updated, so the inference 
function is simpler than the training function:

infer_model = theano.function(
    inputs=[x],
    outputs=[y_pred]
)

Optimization and other update rules
Learning rate is a very important parameter to set correctly. Too low a learning rate 
will make it difficult to learn and will train slower, while too high a learning rate will 
increase sensitivity to outlier values, increase the amount of noise in the data, train 
too fast to learn generalization, and get stuck in local minima:

When training loss does not improve anymore for one or a few more iterations,  
the learning rate can be reduced by a factor:

0.1λ λ← ×
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It helps the network learn fine-grained differences in the data, as shown when 
training residual networks (Chapter 7, Classifying Images with Residual Networks):

To check the training process, it is usual to print the norm of the parameters,  
the gradients, and the updates, as well as NaN values.

The update rule seen in this chapter is the simplest form of update, known as 
Stochastic Gradient Descent (SGD). It is a good practice to clip the norm to  
avoid saturation and NaN values. The updates list given to the theano function 
becomes this:

def clip_norms(gs, c):
    norm = T.sqrt(sum([T.sum(g**2) for g in gs]))
    return [ T.switch(T.ge(norm, c), g*c/norm, g) for g in gs]

updates = []
grads = T.grad(cost, params)
grads = clip_norms(grads, 50)
for p,g in zip(params,grads):
    updated_p = p - learning_rate * g
    updates.append((p, updated_p))

Some very simple variants have been experimented with in order to improve the 
descent, and are proposed in many deep learning libraries. Let's see them in Theano.

Momentum

For each parameter, a momentum (v, as velocity) is computed from the gradients 
accumulated over the iterations with a time decay. The previous momentum value 
is multiplied by a decay parameter between 0.5 and 0.9 (to be cross-validated) and 
added to the current gradient to provide the new momentum value. 
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The momentum of the gradients plays the role of a moment of inertia in the updates, 
in order to learn faster. The idea is also that oscillations in successive gradients will 
be canceled in the momentum, to move the parameter in a more direct path towards 
the solution:

The decay parameter between 0.5 and 0.9 is a hyperparameter usually referred to as 
the momentum, in an abuse of language:

updates = []
grads = T.grad(cost, params)
grads = clip_norms(grads, 50)
for p,g in zip(params,grads):
    m = theano.shared(p.get_value() * 0.)
    v = (momentum * m) - (learning_rate * g)
    updates.append((m, v))
    updates.append((p, p + v))

Nesterov Accelerated Gradient

Instead of adding v to the parameter, the idea is to add directory the future value of 
the momentum momentum v - learning_rate g, in order to have it compute the 
gradients in the next iteration directly at the next position:

updates = []
grads = T.grad(cost, params)
grads = clip_norms(grads, 50)
for p, g in zip(params, grads):
    m = theano.shared(p.get_value() * 0.)
    v = (momentum * m) - (learning_rate * g)
    updates.append((m,v))
    updates.append((p, p + momentum * v - learning_rate * g))
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Adagrad

This update rule, as well as the following rules consists of adapting the learning rate 
parameter-wise (differently for each parameter). The element-wise sum of squares 
of the gradients is accumulated into a shared variable for each parameter in order to 
decay the learning rate in an element-wise fashion:

updates = []
grads = T.grad(cost, params)
grads = clip_norms(grads, 50)
for p,g in zip(params,grads):
    acc = theano.shared(p.get_value() * 0.)
    acc_t = acc + g ** 2
    updates.append((acc, acc_t))
    p_t = p - (learning_rate / T.sqrt(acc_t + 1e-6)) * g
    updates.append((p, p_t))

Adagrad is an aggressive method, and the next two rules, AdaDelta and RMSProp,  
try to reduce its aggression.

AdaDelta

Two accumulators are created per parameter to accumulate the squared gradients 
and the updates in moving averages, parameterized by the decay rho:

updates = []
grads = T.grad(cost, params)
grads = clip_norms(grads, 50)
for p,g in zip(params,grads):
    acc = theano.shared(p.get_value() * 0.)
    acc_delta = theano.shared(p.get_value() * 0.)
    acc_new = rho * acc + (1 - rho) * g ** 2
    updates.append((acc,acc_new))
    update = g * T.sqrt(acc_delta + 1e-6) / T.sqrt(acc_new + 1e-6)
    updates.append((p, p - learning_rate * update))
    updates.append((acc_delta, rho * acc_delta + (1 - rho) * update ** 
2))
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RMSProp

This updates rule is very effective in many cases. It is an improvement of the 
Adagrad update rule, using a moving average (parameterized by rho) to get  
a less aggressive decay:

updates = []
grads = T.grad(cost, params)
grads = clip_norms(grads, 50)
for p,g in zip(params,grads):
    acc = theano.shared(p.get_value() * 0.)
    acc_new = rho * acc + (1 - rho) * g ** 2
    updates.append((acc, acc_new))
    updated_p = p - learning_rate * (g / T.sqrt(acc_new + 1e-6))
    updates.append((p, updated_p))

Adam

This is RMSProp with momemtum, one of the best choices for the learning rule.  
The time step is kept track of in a shared variable, t. Two moving averages are 
computed, one for the past squared gradients, and the other for past gradient:

b1=0.9, b2=0.999, l=1-1e-8
updates = []
grads = T.grad(cost, params)
grads = clip_norms(grads, 50)  
t = theano.shared(floatX(1.))
b1_t = b1 * l **(t-1)

for p, g in zip(params, grads):
    m = theano.shared(p.get_value() * 0.)
    v = theano.shared(p.get_value() * 0.)
    m_t = b1_t * m + (1 - b1_t) * g
    v_t = b2 * v + (1 - b2) * g**2 
    updates.append((m, m_t))
    updates.append((v, v_t))
    updates.append((p, p - (learning_rate * m_t / (1 - b1**t)) / 
(T.sqrt(v_t / (1 - b2**t)) + 1e-6)) )
updates.append((t, t + 1.))

To conclude on update rules, many recent research papers still prefer the simple  
SGD rule, and work the architecture and the initialization of the layers with the 
correct learning rate. For more complex networks, or if the data is sparse, the 
adaptive learning rate methods are better, sparing you the pain of finding the  
right learning rate.
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Related articles
You can refer to the following documents for more insights into the topics covered in 
this chapter:

• Deeplearning.net Theano tutorials: Single layer (http://deeplearning.net/
tutorial/logreg.html), MLP (http://deeplearning.net/tutorial/
mlp.html), Convolutions (http://deeplearning.net/tutorial/lenet.
html)

• All loss functions: for classification, regression, and joint embedding 
(http://christopher5106.github.io/deep/learning/2016/09/16/
about-loss-functions-multinomial-logistic-logarithm-cross-
entropy-square-errors-euclidian-absolute-frobenius-hinge.html)

• The last example corresponds to Yann Lecun's five-5 layer network as in 
Gradient based learning applied to document recognition (http://yann.
lecun.com/exdb/publis/pdf/lecun-98.pdf)

• Understanding the difficulty of training deep feedforward neural networks, 
Xavier Glorot, Yoshua Bengio, 2010

• Maxout Networks: Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, 
Aaron Courville, Yoshua Bengio 2013

• An overview of gradient descent algorithms: http://sebastianruder.com/
optimizing-gradient-descent/

• CS231n Convolutional Neural Networks for Visual Recognition, http://
cs231n.github.io/neural-networks-3/

• Yes you should understand backprop, Andrej Karpathy, 2016, https://
medium.com/@karpathy/

• Striving for Simplicity: The All Convolutional Net, Jost Tobias Springenberg, 
Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2014

• Fractional Max-Pooling, Benjamin Graham, 2014
• Batch Normalization: Accelerating Deep Network Training by Reducing 

Internal Covariate Shift, Sergey Ioffe, Christian Szegedy, 2015
• Visualizing and Understanding Convolutional Networks, Matthew D Zeiler, 

Rob Fergus, 2013
• Going Deeper with Convolutions, Christian Szegedy, Wei Liu, Yangqing Jia, 

Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent 
Vanhoucke, Andrew Rabinovich, 2014
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Summary
Classification is a very wide topic in machine learning. It consists of predicting 
a class or a category, as we have shown with our handwritten digits example. In 
Chapter 7, Classifying Images with Residual Networks, we'll see how to classify a wider 
set of natural images and objects.

Classification can be applied to different problems and the cross-entropy/negative 
log likelihood is the common loss function to solve them through gradient descent. 
There are many other loss functions for problems such as regression (mean square 
error loss) or unsupervised joint learning (hinge loss).

In this chapter, we have been using a very simple update rule as gradient descent 
named stochastic gradient descent, and presented some other gradient descent 
variants (Momentum, Nesterov, RMSprop, ADAM, ADAGRAD, ADADELTA). There has been 
some research into second order optimizations, such as Hessian Free, or K-FAC, 
which provided better results in deep or recurrent networks but remain complex  
and costly, and have not be widely adopted until now. Researchers have been 
looking for new architectures that perform better without the need for such 
optimization techniques.

When training networks, I would strongly encourage you to use the following two 
Linux commands:

• Screen: To detach your shell, run scripts on the server and reconnect later, 
since training usually takes a few days.

• Tee: To which you pipe the output of your running program, in order to 
save the displayed results to a file, while continuing to visualize the output 
in your shell. This will spare your code the burden of log functions and 
frameworks.



Encoding Word into Vector
In the previous chapter, inputs to neural nets were images, that is, vectors of 
continuous numeric values, the natural language for neural nets. But for many  
other machine learning fields, inputs may be categorical and discrete.

In this chapter, we'll present a technique known as embedding, which learns to 
transform discrete input signals into vectors. Such a representation of inputs is an 
important first step for compatibility with the rest of neural net processing.

Such embedding techniques will be illustrated with an example of natural language 
texts, which are composed of words belonging to a finite vocabulary.

We will present the different aspects of embedding:

• The principles of embedding
• The different types of word embedding
• One hot encoding versus index encoding
• Building a network to translate text into vectors
• Training and discovering the properties of embedding spaces
• Saving and loading the parameters of a model
• Dimensionality reduction for visualization
• Evaluating the quality of embeddings
• Applications of embedding spaces
• Weight tying
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Encoding and embedding
Each word can be represented by an index in a vocabulary:

Encoding words is the process of representing each word as a vector.  
The simplest method of encoding words is called one-hot or 1-of-K vector 
representation. In this method, each word is represented as an V 1×�  vector with  
all 0s and one 1 at the index of that word in the sorted vocabulary. In this notation, 
|V| is the size of the vocabulary. Word vectors in this type of encoding for 
vocabulary {King, Queen, Man, Woman, Child} appear as in the following example 
of encoding for the word Queen:

In the one-hot vector representation method, every word is equidistant from the 
other. However, it fails to preserve any relationship between them and leads to  
data sparsity. Using word embedding does overcome some of these drawbacks.

Word embedding is an approach to distributional semantics that represents words as 
vectors of real numbers. Such representation has useful clustering properties, since it 
groups together words that are semantically and syntactically similar.
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For example, the words seaworld and dolphin will be very close in the created space. 
The main aim of this step is to map each word into a continuous, low-dimensional, and 
real-valued vector and use it as input to a model such as a Recurrent Neural Network 
(RNN), a Convolutional Neural Network (CNN), and so on:

Such a representation is dense. We would expect synonyms and interchangeable 
words to be close in that space.

In this chapter, we will present the very popular model of word embedding, 
Word2Vec, which was initially developed by Mikolov et al. in 2013. Word2Vec  
has two different models: Continuous Bag of Words (CBOW) and Skip-gram.

In the CBOW method, the goal is to predict a word given a surrounding context. 
A Skip-gram predicts a surrounding context of words given a single word (see the 
following figure):
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For this chapter, we will focus on the CBOW model. We will start by presenting the 
dataset, then we will explain the idea behind the method. Afterwards, we will show 
a simple implementation of it using Theano. Finally, we will end with referring to 
some applications of word embedding.

Dataset
Before we explain the model part, let us start by processing the text corpus by 
creating the vocabulary and integrating the text with it so that each word is 
represented as an integer. As a dataset, any text corpus can be used, such as 
Wikipedia or web articles, or posts from social networks such as Twitter.  
Frequently used datasets include PTB, text8, BBC, IMDB, and WMT datasets.

In this chapter, we use the text8 corpus. It consists of a pre-processed version  
of the first 100 million characters from a Wikipedia dump. Let us first download  
the corpus:

wget http://mattmahoney.net/dc/text8.zip -O /sharedfiles/text8.gz
gzip -d /sharedfiles/text8.gz -f

Now, we construct the vocabulary and replace the rare words with tokens for 
UNKNOWN. Let us start by reading the data into a list of strings:

1. Read the data into a list of strings:
words = []
with open('data/text8') as fin:
  for line in fin:
    words += [w for w in line.strip().lower().split()]

data_size = len(words)  
print('Data size:', data_size)

From the list of strings, we can now build the dictionary. We start by 
counting the frequency of the words in the word_freq dictionary. 
Afterwards, we replace the words that are infrequent, that have a number of 
ocurrences in the corpus less than max_df, with tokens.

2. Build the dictionary and replace rare words with the UNK token:
unkown_token = '<UNK>'
pad_token = '<PAD>' # for padding the context
max_df = 5 # maximum number of freq
word_freq = [[unkown_token, -1], [pad_token, 0]]
word_freq.extend(Counter(words).most_common())
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word_freq = OrderedDict(word_freq)
word2idx = {unkown_token: 0, pad_token: 1}
idx2word = {0: unkown_token, 1: pad_token}
idx = 2
for w in word_freq:
  f = word_freq[w]
  if f >= max_df:
    word2idx[w] = idx
    idx2word[idx] = w
    idx += 1
  else:
    word2idx[w] = 0 # map the rare word into the unkwon token
    word_freq[unkown_token] += 1 # increment the number of unknown 
tokens

data = [word2idx[w] for w in words]

del words # for reduce mem use

vocabulary_size = len(word_freq)
most_common_words = list(word_freq.items())[:5]
print('Most common words (+UNK):', most_common_words)
print('Sample data:', data[:10], [idx2word[i] for i in data[:10]])

Data size: 17005207
Most common words (+UNK): [('<UNK>', 182564), ('the', 1061396), ('of', 593677), ('and', 
416629), ('one', 411764)]
Sample data: [5239, 3084, 12, 6, 195, 2, 3137, 46, 59, 156] ['anarchism', 'originated', 'as', 'a', 
'term', 'of', 'abuse', 'first', 'used', 'against']

3. Now, let us define the functions of creating the dataset (that is, the contexts 
and targets):

def get_sample(data, data_size, word_idx, pad_token, c = 1):

  idx = max(0, word_idx - c)
  context = data[idx:word_idx]
  if word_idx + 1 < data_size:
    context += data[word_idx + 1 : min(data_size, word_idx + c + 
1)]
  target = data[word_idx]
  context = [w for w in context if w != target]
  if len(context) > 0:
    return target, context + (2 * c - len(context)) * [pad_token]
  return None, None

def get_data_set(data, data_size, pad_token, c=1):
  contexts = []
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  targets = []
  for i in xrange(data_size):
    target, context =  get_sample(data, data_size, i, pad_token, 
c)
    if not target is None:
      contexts.append(context)
      targets.append(target)

  return np.array(contexts, dtype='int32'), np.array(targets, 
dtype='int32')

Continuous Bag of Words model
The design of the neural network to predict a word given its surrounding context is 
shown in the following figure:
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The input layer receives the context while the output layer predicts the target  
word. The model we'll use for the CBOW model has three layers: input layer, hidden 
layer (also called the projection layer or embedding layer), and output layer. In our 
setting, the vocabulary size is V and the hidden layer size is N. Adjacent units are 
fully connected.

The input and the output can be represented either by an index (an integer, 
0-dimensional) or a one-hot-encoding vector (1-dimensional). Multiplying with  
the one-hot-encoding vector v consists simply of taking the j-th row of the 
embedding matrix:

Since the index representation is more efficient than the one-hot encoding 
representation in terms of memory usage, and Theano supports indexing symbolic 
variables, it is preferable to adopt the index representation as much as possible.

Therefore, input (context) will be 2-dimensional, represented by a matrix, with 
two dimensions: the batch size and the context length. The output (target) is 
1-dimensional, represented by a vector with one dimension: the batch size.

Let's define the CBOW model:

import theano
import theano.tensor as T
import numpy as np
import math
context = T.imatrix(name='context')
target = T.ivector('target')
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The context and target variables are the known parameters of this model. The 
unknown parameters of the CBOW model are the connection matrix 

inW , between 
the input layer and the hidden layer, and the connection matrix outW , between the 
hidden layer and the output layer:

vocab_size = len(idx2word)
emb_size = 128
W_in_values = np.asarray(np.random.uniform(-1.0, 1.0, 
 (vocab_size, emb_size)),
dtype=theano.config.floatX)

W_out_values = np.asarray(np.random.normal(
 scale=1.0 / math.sqrt(emb_size),
   size=(emb_size, vocab_size)),
   dtype=theano.config.floatX)

W_in = theano.shared(value=W_in_values,
                      name='W_in',
                      borrow=True)

W_out = theano.shared(value=W_out_values,
                      name='W_out',
                      borrow=True)

params = [W_in, W_out]

Each row of inW  is the N-dimension vector representation  of the associated 
word, i, of the input layer, where N is the hidden layer size. Given a context, when 
computing the hidden layer output, the CBOW model takes the average of the 
vectors of the input context words, and uses the product of the input -> hidden 
weight matrix and the average vector as the output:

( )1 2

1
cw w wh v v v

C
= + + ⋅⋅⋅+

  (1)
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Here, C is the number of words in the context, w1, w2, w3,..., wc are the words 
in the context, and  is the input vector of a word iw . The activation function of 
the output layer is the softmax layer. Equations 2 and 3 show how we compute the 
output layer:

Here,  is the j-th column of the matrix outW  and V is the vocabulary size. In our 
settings, the vocabulary size is vocab_size and the hidden layer size is emb_size. 
The loss function is as follows:

( ) ( )1 2log , , logj C jE p w w w w p w h= − ⋅⋅⋅ = −
  (4)

Now, let us translate equations 1, 2, 3, and 4 in Theano.

To compute the hidden (projection) layer output: input -> hidden (eq. 1)

h = T.mean(W_in[context], axis=1) 

For the hidden -> output layer (eq. 2)
uj = T.dot(h, W_out) 

The softmax activation (eq. 3) :

p_target_given_contex = T.nnet.softmax(uj).dimshuffle(1, 0)

The loss function (eq. 4):

loss = -T.mean(T.log(p_target_given_contex)[T.arange(target.shape[0]), 
target]) 

Update the parameters of the model using SGD:

g_params = T.grad(cost=loss, wrt=params)
updates = [
        (param, param - learning_rate * gparam)
        for param, gparam in zip(params, g_params)
]
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Finally, we need to define the training and evaluation functions.

Let's make the dataset shared to pass it to the GPU. For simplicity, we assume 
that we have a function called get_data_set that returns the set of targets and its 
surrounding context:

contexts, targets = get_data_set(data, data_size, word2idx[pad_token], 
c=2)

contexts = theano.shared(contexts)
targets = theano.shared(targets)

index = T.lscalar('index')

train_model = theano.function(
    inputs=[index],
    outputs=[loss],
    updates=updates,
    givens={
        context: contexts[index * batch_size: (index + 1) * batch_
size],
        target: targets[index * batch_size: (index + 1) * batch_size]
    }
)

The input variable of train_model is the index of the batch, since the whole dataset 
has been transferred in one pass to the GPU thanks to shared variables.

For validation during training, we evaluate the model using the cosine similarity 
between a mini batch of examples and all embeddings.

Let's use a theano variable to place the input to the validation model:

valid_samples = T.ivector('valid_samples') 

Normalized word embedding of the validation input:

embeddings = params[0]
norm = T.sqrt(T.sum(T.sqr(embeddings), axis=1, keepdims=True))
normalized_embeddings = W_in / norm

valid_embeddings = normalized_embeddings[valid_samples]

Similarity is given by the cosine similarity function:

similarity = theano.function([valid_samples], T.dot(valid_embeddings, 
normalized_embeddings.T))
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Training the model
Now we can start training the model. In this example, we chose to train the model 
using SGD with a batch size of 64 and 100 epochs. To validate the model, we 
randomly selected 16 words and used the similarity measure as an evaluation metric:

1. Let's begin training:
valid_size = 16     # Random set of words to evaluate similarity 
on.
valid_window = 100  # Only pick dev samples in the head of the 
distribution.
valid_examples = np.array(np.random.choice(valid_window, valid_
size, replace=False), dtype='int32')

n_epochs = 100
n_train_batches = data_size // batch_size
n_iters = n_epochs * n_train_batches
train_loss = np.zeros(n_iters)
average_loss = 0

for epoch in range(n_epochs):
    for minibatch_index in range(n_train_batches):

        iteration = minibatch_index + n_train_batches * epoch
        loss = train_model(minibatch_index)
        train_loss[iteration] = loss
        average_loss += loss

        if iteration % 2000 == 0:

          if iteration > 0:
            average_loss /= 2000
            # The average loss is an estimate of the loss over the 
last 2000 batches.
            print("Average loss at step ", iteration, ": ", 
average_loss)
            average_loss = 0  

        # Note that this is expensive (~20% slowdown if computed 
every 500 steps)
        if iteration % 10000 == 0:
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          sim = similarity(valid_examples)
          for i in xrange(valid_size):
              valid_word = idx2word[valid_examples[i]]
              top_k = 8 # number of nearest neighbors
              nearest = (-sim[i, :]).argsort()[1:top_k+1]
              log_str = "Nearest to %s:" % valid_word
              for k in xrange(top_k):
                  close_word = idx2word[nearest[k]]
                  log_str = "%s %s," % (log_str, close_word)
              print(log_str)

2. Lastly, let us create two generic functions that will help us save any model 
parameters in a reusable utils.py utility file:
def save_params(outfile, params):
    l = []
    for param in params:
        l = l + [ param.get_value() ]
    numpy.savez(outfile, *l)
    print("Saved model parameters to {}.npz".format(outfile))

def load_params(path, params):
    npzfile = numpy.load(path+".npz")
    for i, param in enumerate(params):
        param.set_value( npzfile["arr_" +str(i)] )
    print("Loaded model parameters from {}.npz".format(path))

3. Running on a GPU, the preceding code prints the following results:

Using gpu device 1: Tesla K80 (CNMeM is enabled with initial size: 80.0% of memory, cuDNN 
5105)
Data size 17005207
Most common words (+UNK) [('<UNK>', 182565), ('<PAD>', 0), ('the', 1061396), ('of', 
593677), ('and', 416629)]
Sample data [5240, 3085, 13, 7, 196, 3, 3138, 47, 60, 157] ['anarchism', 'originated', 'as', 'a', 
'term', 'of', 'abuse', 'first', 'used', 'against']
Average loss at step  0 :  11.2959747314
Average loss at step  2000 :  8.81626828802
Average loss at step  4000 :  7.63789177912
Average loss at step  6000 :  7.40699760973
Average loss at step  8000 :  7.20080085599
Average loss at step  10000 :  6.85602856147
Average loss at step  12000 :  6.88123817992
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Average loss at step  14000 :  6.96217652643
Average loss at step  16000 :  6.53794862854
...

Average loss at step  26552000 :  4.52319500107
Average loss at step  26554000 :  4.55709513521
Average loss at step  26556000 :  4.62755958384
Average loss at step  26558000 :  4.6266620369
Average loss at step  26560000 :  4.82731778347
Nearest to system: systems, network, device, unit, controller, schemes, vessel, scheme,
Nearest to up: off, out, alight, forth, upwards, down, ordered, ups,
Nearest to first: earliest, last, second, next, oldest, fourth, third, newest,
Nearest to nine: apq, nineteenth, poz, jyutping, afd, apod, eurocents, zoolander,
Nearest to between: across, within, involving, with, among, concerning, through, from,
Nearest to state: states, provincial, government, nation, gaeltachta, reservation, infirmity, slates,
Nearest to are: were, is, aren, was, include, have, weren, contain,
Nearest to may: might, should, must, can, could, would, will, cannot,
Nearest to zero: hundred, pounders, hadza, cest, bureaus, eight, rang, osr,
Nearest to that: which, where, aurea, kessai, however, unless, but, although,
Nearest to can: could, must, cannot, should, may, will, might, would,
Nearest to s: his, whose, its, castletown, cide, codepoint, onizuka, brooklands,
Nearest to will: would, must, should, could, can, might, shall, may,
Nearest to their: its, his, your, our, her, my, the, whose,
Nearest to but: however, though, although, which, while, whereas, moreover, unfortunately,
Nearest to not: never, indeed, rarely, seldom, almost, hardly, unable, gallaecia,
Saved model parameters to model.npz

Let us note:

• Rare words are updated only a small number of times, while frequent words 
appear more often in inputs and context windows. Subsampling of frequent 
words can remedy to this.

• All weights are updated in the output embedding, and only a few of them, 
those corresponding to the words in the context window, are updated 
positively. Negative sampling can help rebalance the positives and  
negatives in the update.



Encoding Word into Vector

[ 88 ]

Visualizing the learned embeddings
Let us visualize the embedding in a 2D figure in order to get an understanding of 
how well they capture similarity and semantics. For that purpose, we need to reduce 
the number of dimension of the embedding, which is highly dimensional, to two 
dimensions without altering the structure of the embeddings.

Reducing the number of dimension is called manifold learning, and many different 
techniques exist, some of them linear, such as Principal Component Analysis (PCA), 
Independent Component Analysis (ICA), Linear Discriminant Analysis (LDA), 
and Latent Sementic Analysis / Indexing (LSA / LSI), and some are non-linear, 
such as Isomap, Locally Linear Embedding (LLE), Hessian Eigenmapping, Spectral 
embedding, Local tangent space embedding, Multi Dimensional Scaling (MDS), 
and t-distributed Stochastic Neighbor Embedding (t-SNE).

To display the word embedding, let us use t-SNE, a great technique adapted to  
high dimensional data to reveal local structures and clusters, without crowding 
points together:

1. Visualize the embeddings:
def plot_with_labels(low_dim_embs, labels, filename='tsne.png'):
  assert low_dim_embs.shape[0] >= len(labels), "More labels than 
embeddings"
  plt.figure(figsize=(18, 18))  #in inches
  for i, label in enumerate(labels):
    x, y = low_dim_embs[i,:]
    plt.scatter(x, y)
    plt.annotate(label,
                 xy=(x, y),
                 xytext=(5, 2),
                 textcoords='offset points',
                 ha='right',
                 va='bottom')

  plt.savefig(filename)

from sklearn.manifold import TSNE
import matplotlib.pyplot as plt

tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
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plot_only = 500
low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only,:])
labels = [idx2word[i] for i in xrange(plot_only)]
plot_with_labels(low_dim_embs, labels)

The plotted map displays the words with similar embeddings close to each other:
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Evaluating embeddings – analogical 
reasoning
Analogical reasoning is a simple and efficient way to evaluate embeddings by 
predicting syntactic and semantic relationships of the form a is to b as c is to _?, 
denoted as a : b → c : ?. The task is to identify the held-out fourth word, with only 
exact word matches deemed correct.

 For example, the word woman is the best answer to the question king is to queen as 
man is to?. Assume that w

�
 is the representation vector for the word w  normalized 

to unit norm. Then, we can answer the question a : b → c : ? , by finding the word d ′  
with the representation closest to:

b a c− +
r r r

According to cosine similarity:

Now let us implement the analogy prediction function using Theano. First, we need 
to define the input of the function. The analogy function receives three inputs, which 
are the word indices of a, b, and c:

analogy_a = T.ivector('analogy_a')  
analogy_b = T.ivector('analogy_b')  
analogy_c = T.ivector('analogy_c')

Then, we need to map each input to the word embedding vector. Each row of a_emb, 
b_emb, c_emb is a word's embedding vector:

a_emb = embeddings[analogy_a]  # a's embs
b_emb = embeddings[analogy_b]  # b's embs
c_emb = embeddings[analogy_c]  # c's embs

Now we can compute the cosine distance between each target and vocab pair.  
We expect that d's embedding vectors on the unit hyper-sphere is near: c_emb + 
(b_emb - a_emb), which has the shape [bsz, emb_size]. dist has shape [bsz, 
vocab_size].

 dist = T.dot(target, embeddings.T)
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In this example, we consider that the prediction function takes the top four words. 
Thus, we can define the function in Theano as the following:

pred_idx = T.argsort(dist, axis=1)[:, -4:]
prediction = theano.function([analogy_a, analogy_b, analogy_c], pred_
idx)

To run the preceding function, we need to load the evaluation data, which is in this 
example the set of analogy questions defined by Google. Each question contains four 
words separated by spaces. The first question can be interpreted as Athens is to Greece 
as Baghdad is to _? and the correct answer should be Iraq:

Athens Greece Baghdad Iraq
Athens Greece Bangkok Thailand
Athens Greece Beijing China

Let us load the analogy questions using the read_analogies function that is defined 
in the following code:

def read_analogies(fname, word2idx):
    """Reads through the analogy question file.
    Returns:
      questions: a [n, 4] numpy array containing the analogy 
question's
                 word ids.
      questions_skipped: questions skipped due to unknown words.
    """
    questions = []
    questions_skipped = 0
    with open(fname, "r") as analogy_f:
      for line in analogy_f:
        if line.startswith(":"):  # Skip comments.
          continue
        words = line.strip().lower().split(" ")
        ids = [word2idx.get(w.strip()) for w in words]
        if None in ids or len(ids) != 4:
          questions_skipped += 1
        else:
          questions.append(np.array(ids))
    print("Eval analogy file: ", fname)
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    print("Questions: ", len(questions))
    print("Skipped: ", questions_skipped)

    return np.array(questions, dtype=np.int32)

Now, we can run the evaluation model:

  """Evaluate analogy questions and reports accuracy."""

  # How many questions we get right at precision@1.
  correct = 0
  analogy_data = read_analogies(args.eval_data, word2idx)
  analogy_questions = analogy_data[:, :3]
  answers = analogy_data[:, 3]
  del analogy_data
  total = analogy_questions.shape[0]
  start = 0

  while start < total:
    limit = start + 200
    sub_questions = analogy_questions[start:limit, :]
    sub_answers = answers[start:limit]
    idx = prediction(sub_questions[:,0], sub_questions[:,1], sub_
questions[:,2])

    start = limit
    for question in xrange(sub_questions.shape[0]):
      for j in xrange(4):
        if idx[question, j] == sub_answers[question]:
          # Bingo! We predicted correctly. E.g., [italy, rome, france, 
paris].
          correct += 1
          break
        elif idx[question, j] in sub_questions[question]:
          # We need to skip words already in the question.
          continue
        else:
          # The correct label is not the precision@1
          break
  print()
  print("Eval %4d/%d accuracy = %4.1f%%" % (correct, total,
                                            correct * 100.0 / total))
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This results in:

Eval analogy file:  questions-words.txt
Questions:  17827
Skipped:  1717
Eval   831/17827 accuracy =  4.7%

Evaluating embeddings – quantitative 
analysis
A few words might be enough to indicate that the quantitative analysis of 
embeddings is also possible.

Some word similarity benchmarks propose human-based distances between 
concepts: Simlex999 (Hill et al., 2016), Verb-143 (Baker et al., 2014), MEN (Bruni  
et al., 2014), RareWord (Luong et al., 2013), and MTurk- 771 (Halawi et al., 2012).

Our similarity distance between embeddings can be compared to these human 
distances, using Spearman's rank correlation coefficient to quantitatively evaluate  
the quality of the learned embeddings.

Application of word embeddings
Word embeddings capture the meaning of the words. They translate a discrete input 
into an input that can be processed by neural nets.

Embeddings are the start of many applications linked to language:

• Generating texts, as we'll see in the next chapter
• Translation systems, where input and target sentences are sequences of 

words and whose embeddings can be processed by end-to-end neural nets 
(Chapter 8, Translating and Explaining with Encoding – decoding Networks)

• Sentiment analysis (Chapter 5, Analyzing Sentiment with a Bidirectional LSTM)
• Zero-shot learning in computer vision; the structure in the word language 

enables us to find classes for which no training images exist
• Image annotation/captioning
• Neuro-psychiatry, for which neural nets can predict with 100% accuracy 

some psychiatric disorders in human beings
• Chatbots, or answering questions from a user (Chapter 9, Selecting Relevant 

Inputs or Memories with the Mechanism of Attention)
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As with words, the principle of semantic embedding can be used on any problem 
with categorical variables (classes of images, sounds, films, and so on), where the 
learned embedding for the activation of categorical variables can be used as input  
to neural nets for further classification challenges.

As language structures our mind, word embeddings help structure or improve the 
performance of neural net based systems.

Weight tying
Two weight matrices, inW  and outW  have been used for input or output respectively. 
While all weights of outW  are updated at every iteration during back propagation, inW
is only updated on the column corresponding to the current training input word.

Weight tying (WT) consists of using only one matrix, W, for input and output 
embedding. Theano then computes the new derivatives with respect to these new 
weights and all weights in W are updated at every iteration. Fewer parameters leads 
to less overfitting.

In the case of Word2Vec, such a technique does not give better results for a simple 
reason: in the Word2Vec model, the probability of finding the input word in the 
context is given as:

( ) ( )TW i W i⋅ ⋅ ⋅

It should be as close to zero but cannot be zero except if W = 0.

But in other applications, such as in Neural Network Language Models (NNLM) 
in Chapter 4, Generating Text with a Recurrent Neural Net and Neural Machine 
Translation (NMT) in Chapter 8, Translating and Explaining with Encoding-decoding 
Networks), it can be shown [Using the output embedding to improve the language  
models] that:

• Input embeddings are usually worse than output embeddings
• WT solves this problem
• The common embedding learned with WT is close in quality to the output 

embedding without WT
• Inserting a regularized projection matrix P before the output embedding 

helps the networks use the same embedding and leads to even better results 
under WT
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Further reading
Please refer to the following articles:

• Efficient Estimation of Word Representations in Vector Space,  
Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean, Jan 2013

• Factor-based Compositional Embedding Models, Mo Yu, 2014
• Character-level Convolutional Networks for Text Classification,  

Xiang Zhang, Junbo Zhao, Yann LeCun, 2015
• Distributed Representations of Words and Phrases and their 

Compositionality, Tomas Mikolov, Ilya Sutskever, Kai Chen,  
Greg Corrado, Jeffrey Dean, 2013

• Using the Output Embedding to Improve Language Models, Ofir Press,  
Lior Wolf, Aug 2016

Summary
This chapter presented a very common way to transform discrete inputs in particular 
texts into numerical embeddings, in the case of natural language processing.

The technique to train these word representations with neural networks does not 
require us to label the data and infers its embedding directly from natural texts.  
Such training is named unsupervised learning.

One of the main challenges with deep learning is to convert input and output signals 
into representations that can be processed by nets, in particular vectors of floats. 
Then, neural nets give all the tools to process these vectors, to learn, decide, classify, 
reason, or generate.

In the next chapters, we'll use these embeddings to work with texts and more 
advanced neural networks. The first application presented in the next chapter is 
about automatic text generation.
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Generating Text with a 
Recurrent Neural Net

In the previous chapter, you learned how to represent a discrete input into a  
vector so that neural nets have the power to understand discrete inputs as well  
as continuous ones.

Many real-world applications involve variable-length inputs, such as connected 
objects and automation (sort of Kalman filters, much more evolved); natural 
language processing (understanding, translation, text generation, and image 
annotation); human behavior reproduction (text handwriting generation and  
chat bots); and reinforcement learning.

Previous networks, named feedforward networks, are able to classify inputs of fixed 
dimensions only. To extend their power to variable-length inputs, a new category 
of networks has been designed: the recurrent neural networks (RNN) that are well 
suited for machine learning tasks on variable-length inputs or sequences.

Three well-known recurrent neural nets (simple RNN, GRU, and LSTM) are 
presented for the example of text generation. The topics covered in this chapter  
are as follows:

• The case of sequences
• The mechanism of recurrent networks
• How to build a simple recurrent network
• Backpropagation through time
• Different types of RNN, LSTM, and GRU
• Perplexity and word error rate
• Training on text data for text generation
• Applications of recurrent networks
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Need for RNN
Deep learning networks for natural language is numerical and deals well with 
multidimensional arrays of floats and integers, as input values. For categorical 
values, such characters or words, the previous chapter demonstrated a technique 
known as embedding for transforming them into numerical values as well.

So far, all inputs have been fixed-sized arrays. In many applications, such as texts 
in natural language processing, inputs have one semantic meaning but can be 
represented by sequences of variable length.

There is a need to deal with variable-length sequences as shown in the  
following diagram:

Recurrent Neural Networks (RNN) are the answer to variable-length inputs.

Recurrence can be seen as applying a feedforward network more than once at 
different time steps, with different incoming input data, but with a major difference, 
the presence of connections to the past, previous time steps, and in one goal, to refine 
the representation of input through time.

At each time step, the hidden layer output values represent an intermediate state of 
the network.

Recurrent connections define the transition for moving from one state to another, 
given an input, in order to refine the representation:
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Recurrent neural networks are suited for challenges involving sequences, such as 
texts, sounds and speech, hand writing, and time series.

A dataset for natural language
As a dataset, any text corpus can be used, such as Wikipedia, web articles, or even 
with symbols such as code or computer programs, theater plays, and poems; the 
model will catch and reproduce the different patterns in the data.

In this case, let's use tiny Shakespeare texts to predict new Shakespeare texts or at 
least, new texts written in a style inspired by Shakespeare; two levels of predictions 
are possible, but can be handled in the same way:

• At the character level: Characters belong to an alphabet that includes 
punctuation, and given the first few characters, the model predicts the next 
characters from an alphabet, including spaces to build words and sentences. 
There is no constraint for the predicted word to belong to a dictionary and 
the objective of training is to build words and sentences close to real ones.

• At the word level: Words belong to a dictionary that includes punctuation, 
and given the first few words, the model predicts the next word out of a 
vocabulary. In this case, there is a strong constraint on the words since they 
belong to a dictionary, but not on sentences. We expect the model to focus 
more on capturing the syntax and meaning of the sentences than on the 
character level.

In both modes, token designates character/word; dictionary, alphabet, or vocabulary 
designates (the list of possible values for the token);
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The popular NLTK library, a Python module, is used to split texts into sentences and 
tokenize into words:

conda install nltk

In a Python shell, run the following command to download the English tokenizer in 
the book package:

import nltk
nltk.download("book")

Let's parse the text to extract words:

from load import parse_text
X_train, y_train, index_to_word = parse_text("data/tiny-shakespear.
txt", type="word")

for i in range(10):
  print "x", " ".join([index_to_word[x] for x in X_train[i]])
  print "y"," ".join([index_to_word[x] for x in y_train[i]])

Vocabulary size 9000
Found 12349 unique words tokens.
The least frequent word in our vocabulary is 'a-fire' and appeared 1 times.
x START first citizen : before we proceed any further , hear me speak .
y first citizen : before we proceed any further , hear me speak . END
x START all : speak , speak .
y all : speak , speak . END
x START first citizen : you are all resolved rather to die than to famish ?
y first citizen : you are all resolved rather to die than to famish ? END
x START all : resolved .
y all : resolved . END
x START resolved .
y resolved . END
x START first citizen : first , you know caius marcius is chief enemy to the people .
y first citizen : first , you know caius marcius is chief enemy to the people . END
x START all : we know't , we know't .
y all : we know't , we know't . END
x START first citizen : let us kill him , and we 'll have corn at our own price .
y first citizen : let us kill him , and we 'll have corn at our own price . END
x START is't a verdict ?
y is't a verdict ? END
x START all : no more talking o n't ; let it be done : away , away !
y all : no more talking o n't ; let it be done : away , away ! END
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Or the char library:

from load import parse_text
X_train, y_train, index_to_char = parse_text("data/tiny-shakespear.
txt",  
    type="char")

for i in range(10):
  print "x",''.join([index_to_char[x] for x in X_train[i]])
  print "y",''.join([index_to_char[x] for x in y_train[i]])

x ^first citizen: before we proceed any further, hear me speak
y irst citizen: before we proceed any further, hear me speak.$
x ^all: speak, speak
y ll: speak, speak.$
x ^first citizen: you are all resolved rather to die than to famish
y irst citizen: you are all resolved rather to die than to famish?$
x ^all: resolved
y ll: resolved.$
x ^resolved
y esolved.$
x ^first citizen: first, you know caius marcius is chief enemy to the people
y irst citizen: first, you know caius marcius is chief enemy to the people.$
x ^all: we know't, we know't
y ll: we know't, we know't.$
x ^first citizen: let us kill him, and we'll have corn at our own price
y irst citizen: let us kill him, and we'll have corn at our own price.$
x ^is't a verdict
y s't a verdict?$
x ^all: no more talking on't; let it be done: away, away
y ll: no more talking on't; let it be done: away, away!$

The additional start token (the START word and the ^ character) avoids having a void 
hidden state when the prediction starts. Another solution is to initialize the  
first hidden state with 0 0hh W= .

The additional end token (the END word and the $ character) helps the network learn 
to predict a stop when the sequence generation is predicted to be finished.

Last, the out of vocabulary token (the UNKNOWN word) replaces words that do not 
belong to the vocabulary to avoid big dictionaries.
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In this example, we'll omit the validation dataset, but for any real-world application, 
keeping a part of the data for validation is a good practice.

Also, note that functions from Chapter 2, Classifying Handwritten Digits with a 
Feedforward Network for layer initialization shared_zeros and shared_glorot_
uniform and from Chapter 3, Encoding Word into Vector for model saving and loading 
save_params and load_params have been packaged into the utils package:

from theano import *
import theano.tensor as T
from utils import shared_zeros,  
    shared_glorot_uniform, 
    save_params, 
    load_params

Simple recurrent network
An RNN is a network applied at multiple time steps but with a major difference:  
a connection to the previous state of layers at previous time steps named hidden 
states th :
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This can be written in the following form:

An RNN can be unrolled as a feedforward network applied on the sequence ( )
t

x t     
as input and with shared parameters between different time steps.

Input and output's first dimension is time, while next dimensions are for the 
data dimension inside each step. As seen in the previous chapter, the value at 
a time step (a word or a character) can be represented either by an index (an 
integer, 0-dimensional) or a one-hot-encoding vector (1-dimensional). The former 
representation is more compact in memory. In this case, input and output sequences 
will be 1-dimensional represented by a vector, with one dimension, the time:

x = T.ivector()
y = T.ivector()

The structure of the training program remains the same as in Chapter 2, Classifying 
Handwritten Digits with a Feedforward Network with feedforward network, except the 
model that we'll define with a recurrent module shares the same weights at different 
time steps:

embedding_size = len(index_)
n_hidden=500

Let's define the hidden and input weights:

U = shared_glorot_uniform(( embedding_size,n_hidden), name="U")
W = shared_glorot_uniform((n_hidden, n_hidden), name="W")
bh = shared_zeros((n_hidden,), name="bh")
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And the output weights:

V = shared_glorot_uniform(( n_hidden, embedding_size), name="V")
by = shared_zeros((embedding_size,), name="by")

params = [U,V,W,by,bh]

def step(x_t, h_tm1):
    h_t = T.tanh(U[x_t] + T.dot( h_tm1, W) + bh)
    y_t = T.dot(h_t, V) + by
    return h_t, y_t

Initial state can be set to zero while using the start tokens:

h0 = shared_zeros((n_hidden,), name='h0')
[h, y_pred], _ = theano.scan(step, sequences=x, outputs_info=[h0, 
None], truncate_gradient=10)

It returns two tensors, where the first dimension is time and the second dimension is 
data values (0-dimensional in this case).

Gradient computation through the scan function is automatic in Theano and follows 
both direct and recurrent connections to the previous time step. Therefore, due to 
the recurrent connections, the error at a particular time step is propagated to the 
previous time step, a mechanism named Backpropagation Through Time (BPTT).

It has been observed that the gradients either explode or vanish after too many time 
steps. This is why the gradients are truncated after 10 steps in this example, and 
errors will not be backpropagated to further past time steps.

For the remaining steps, we keep the classification as before:

model = T.nnet.softmax(y_pred)
y_out = T.argmax(model, axis=-1)
cost = -T.mean(T.log(model)[T.arange(y.shape[0]), y])

This returns a vector of values at each time step.

LSTM network
One of the main difficulties with RNN is to capture long-term dependencies due to 
the vanishing/exploding gradient effect and truncated backpropagation.

To overcome this issue, researchers have been looking at a long list of potential 
solutions. A new kind of recurrent network was designed in 1997 with a memory 
unit, named a cell state, specialized in keeping and transmitting long-term 
information.
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At each time step, the cell value can be updated partially with a candidate cell and 
partially erased thanks to a gate mechanism. Two gates, the update gate and the 
forget gate, decide how to update the cell, given the previously hidden state value 
and current input value:

( )
( )

1 1

1 1

u ui t uh t uc t

f fi t fh t fc t

g W x W h W c

g W x W h W c

σ

σ
− −

− −

= + +

= + +

The candidate cell is computed in the same way:

( )1tanh ci t ch tW x W hς −= +

The new cell state is computed as follows:

1t f t uc g c g ς−= ∗ + ∗

For the new hidden state, an output gate decides what information in the cell value 
to output:

( )
( )

1 1

tanh
o oi t oh t oc t

t t o

g W x W h W c
h c g

σ − −= + +
= ∗

The remaining stays equal with the simple RNN:

This mechanism allows the network to store some information to use a lot further in 
future than it was possible with a simple RNN.



Generating Text with a Recurrent Neural Net

[ 106 ]

Many variants of design for LSTM have been designed and it is up to you to test 
these variants on your problems to see how they behave.

In this example, we'll use a variant, where gates and candidates use both the 
previously hidden state and previous cell state.

In Theano, let's define the weights for:

- the input gate:

W_xi = shared_glorot_uniform(( embedding_size,n_hidden))
W_hi = shared_glorot_uniform(( n_hidden,n_hidden))
W_ci = shared_glorot_uniform(( n_hidden,n_hidden))
b_i = shared_zeros((n_hidden,))

- the forget gate:

W_xf = shared_glorot_uniform(( embedding_size, n_hidden))
W_hf = shared_glorot_uniform(( n_hidden,n_hidden))
W_cf = shared_glorot_uniform(( n_hidden,n_hidden))
b_f = shared_zeros((n_hidden,))

- the output gate:

W_xo = shared_glorot_uniform(( embedding_size, n_hidden))
W_ho = shared_glorot_uniform(( n_hidden,n_hidden))
W_co = shared_glorot_uniform(( n_hidden,n_hidden))
b_o = shared_zeros((n_hidden,))

- the cell:

W_xc = shared_glorot_uniform(( embedding_size, n_hidden))
W_hc = shared_glorot_uniform(( n_hidden,n_hidden))
b_c = shared_zeros((n_hidden,))

- the output layer:

W_y = shared_glorot_uniform(( n_hidden, embedding_size), name="V")
b_y = shared_zeros((embedding_size,), name="by")

The array of all trainable parameters:

params = [W_xi,W_hi,W_ci,b_i,W_xf,W_hf,W_cf,b_f,W_xo,W_ho,W_co,b_o,W_
xc,W_hc,b_c,W_y,b_y]

The step function to be placed inside the recurrent loop :

def step(x_t, h_tm1, c_tm1):
    i_t = T.nnet.sigmoid(W_xi[x_t] + T.dot(W_hi, h_tm1) + T.dot(W_ci, 
c_tm1) + b_i)
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    f_t = T.nnet.sigmoid(W_xf[x_t] + T.dot(W_hf, h_tm1) + T.dot(W_cf, 
c_tm1) + b_f)
    c_t = f_t * c_tm1 + i_t * T.tanh(W_xc[x_t] + T.dot(W_hc, h_tm1) + 
b_c)
    o_t = T.nnet.sigmoid(W_xo[x_t] + T.dot(W_ho, h_tm1) + T.dot(W_co, 
c_t) + b_o)
    h_t = o_t * T.tanh(c_t)
    y_t = T.dot(h_t, W_y) + b_y
    return h_t, c_t, y_t

Let's create the recurrent loop with the scan operator :

h0 = shared_zeros((n_hidden,), name='h0')
c0 = shared_zeros((n_hidden,), name='c0')
[h, c, y_pred], _ = theano.scan(step,  
 sequences=x,  
 outputs_info=[h0, c0, None],  
 truncate_gradient=10)

Gated recurrent network
The GRU is an alternative to LSTM, simplifying the mechanism without the use of an 
extra cell:

The code to build a gated recurrent network consists simply of defining the weights 
and the step function, as before:

- Weights for the Update gate:

W_xz = shared_glorot_uniform(( embedding_size,n_hidden))
W_hz = shared_glorot_uniform(( n_hidden,n_hidden))
b_z = shared_zeros((n_hidden,))

- Weights for the Reset gate:

W_xr = shared_glorot_uniform(( embedding_size,n_hidden))
W_hr = shared_glorot_uniform(( n_hidden,n_hidden))
b_r = shared_zeros((n_hidden,))
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- Weight for the Hidden layer:

W_xh = shared_glorot_uniform(( embedding_size,n_hidden))
W_hh = shared_glorot_uniform(( n_hidden,n_hidden))
b_h = shared_zeros((n_hidden,))

- Weight for the Output layer:

W_y = shared_glorot_uniform(( n_hidden, embedding_size), name="V")
b_y = shared_zeros((embedding_size,), name="by")

The trainable parameters:

params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_y, b_y]

The step function:

def step(x_t, h_tm1):
    z_t = T.nnet.sigmoid(W_xz[x_t] + T.dot(W_hz, h_tm1) + b_z)
    r_t = T.nnet.sigmoid(W_xr[x_t] + T.dot(W_hr, h_tm1) + b_r)
    can_h_t = T.tanh(W_xh[x_t] + r_t * T.dot(W_hh, h_tm1) + b_h)
    h_t = (1 - z_t) * h_tm1 + z_t * can_h_t
    y_t = T.dot(h_t, W_y) + b_y
    return h_t, y_t

The recurrent loop:

h0 = shared_zeros((n_hidden,), name='h0')
[h, y_pred], _ = theano.scan(step,  
 sequences=x,  
 outputs_info=[h0, None],  
 truncate_gradient=10)

Having introduced the major nets, we'll see how they perform on the text  
generation task.

Metrics for natural language performance
The Word Error Rate (WER) or Character Error Rate (CER) is equivalent to the 
designation of the accuracy error for the case of natural language.

Evaluation of language models is usually expressed with perplexity, which is simply:

cross entropye −
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Training loss comparison
During training, the learning rate might be strong after a certain number of epochs 
for fine-tuning. Decreasing the learning rate when the loss does not decrease 
anymore will help during the last steps of training. To decrease the learning  
rate, we need to define it as an input variable during compilation:

lr = T.scalar('learning_rate')
train_model = theano.function(inputs=[x,y,lr],  
     outputs=cost, 
     updates=updates)

During training, we adjust the learning rate, decreasing it if the training loss is  
not better:

if (len(train_loss) > 1 and train_loss[-1] > train_loss[-2]):
    learning_rate = learning_rate * 0.5

As a first experiment, let's see the impact of the size of the hidden layer on the 
training loss for a simple RNN:

More hidden units improve training speed and might be better in the end. To check 
this, we should run it for more epochs.
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Comparing the training of the different network types, in this case, we do not 
observe any improvement with LSTM and GRU:

This might be due to the truncate_gradient option or because the problem is too 
simple and not so memory-dependent.

Another parameter to tune is the minimum number of occurrences for a word to be a 
part of the dictionary. A higher number will learn on words that are more frequent, 
which is better.

Example of predictions
Let's predict a sentence with the generated model:

sentence = [0]
while sentence[-1] != 1:
    pred = predict_model(sentence)[-1]
    sentence.append(pred)
print(" ".join([ index_[w] for w in sentence[1:-1]]))
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Note that we take the most probable next word (argmax), while we must, in order to 
get some randomness, draw the next word following the predicted probabilities.

At 150 epochs, while the model has still not converged entirely with learning our 
Shakespeare writings, we can play with the predictions, initiating it with a few 
words, and see the network generate the end of the sentences:

• First citizen: A word , i know what a word
• How now!
• Do you not this asleep , i say upon this?
• Sicinius: What, art thou my master?
• Well, sir, come.
• I have been myself
• A most hose, you in thy hour, sir
• He shall not this
• Pray you, sir
• Come, come, you
• The crows?
• I'll give you
• What, ho!
• Consider you, sir
• No more!
• Let us be gone, or your UNKNOWN UNKNOWN, i do me to do
• We are not now

From these examples, we notice that the model has learned to position punctuation 
correctly, adding a point, comma, question mark, or an exclamation mark at the right 
place to order direct objects, indirect objects, and adjectives correctly.

The original texts are composed of short sentences in a Shakespeare style. Bigger 
articles such as Wikipedia pages, as well as pushing the training further with a 
validation split to control overfitting will produce longer texts. Chapter 10, Predicting 
Times Sequence with Advanced RNN: will teach how to predict time sequences with 
Advanced RNN and present an advanced version of this chapter.
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Applications of RNN
This chapter introduced the simple RNN, LSTM, and GRU models. Such 
models have a wide range of applications in sequence generation or sequence 
understanding:

• Text generation, such as automatic generation of Obama political speech 
(obama-rnn), for example with a text seed on jobs:

Good afternoon. God bless you. The United States will step up to 
the cost of a new challenges of the American people that will share 
the fact that we created the problem. They were attacked and so that 
they have to say that all the task of the final days of war that I will 
not be able to get this done. The promise of the men and women who 
were still going to take out the fact that the American people have 
fought to make sure that they have to be able to protect our part. 
It was a chance to stand together to completely look for the com-
mitment to borrow from the American people. And the fact is the 
men and women in uniform and the millions of our country with 
the law system that we should be a strong stretcks of the forces that 
we can afford to increase our spirit of the American people and the 
leadership of our country who are on the Internet of American lives. 
Thank you very much. God bless you, and God bless the United 
States of America.

You can check this example out in detail at https://medium.com/@
samim/obama-rnn-machine-generated-political-speeches-
c8abd18a2ea0#.4nee5wafe.

• Text annotation, for example, the Part of Speech (POS) tags: noun, verb, 
particle, adverb, and adjective.

• Generating human handwriting: http://www.cs.toronto.edu/~graves/
handwriting.html

• Drawing with Sketch-RNN (https://github.com/hardmaru/sketch-rnn)

http://www.cs.toronto.edu/~graves/handwriting.html
http://www.cs.toronto.edu/~graves/handwriting.html
https://github.com/hardmaru/sketch-rnn
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• Speech synthesis: A recurrent network will generate parameters for 
generating each phoneme in a speech or voice speaking. In the following 
image, time-frequency homogeneous blocs are classified in phonemes (or 
graphemes or letters):
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• Music generation:
 ° Melody generation at https://github.com/tensorflow/magenta/

tree/master/magenta/models/melody_rnn.

 ° Mozart style music generation with Mozart-RNN at http://
www.hexahedria.com/2015/08/03/composing-music-with-
recurrent-neural-networks/.

• Any classification of sequences, such as sentiment analysis (positive, 
negative, or neutral sentiments) that we'll address in Chapter 5, Analyzing 
Sentiment with a Bidirectional LSTM.

• Sequence encoding or decoding that we'll address in Chapter 6, Locating with 
Spatial Transformer Networks.

Related articles
You can refer to the following links for more insight:

• The Unreasonable Effectiveness of Recurrent Neural Networks, Andrej 
Karpathy May 21, 2015(http://karpathy.github.io/2015/05/21/rnn-
effectiveness/)

• Understanding LSTM Networks on Christopher Colah's blog's, 2015  
(http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

• Use of LSTM for audio classification: Connectionist Temporal Classification and 
Deep Speech: Scaling up end-to-end speech recognition (https://arxiv.org/
abs/1412.5567)

• Handwriting demo at http://www.cs.toronto.edu/~graves/
handwriting.html

• General Sequence Learning using Recurrent Neural Networks tutorial at  
https://www.youtube.com/watch?v=VINCQghQRuM

• On the difficulty of training Recurrent Neural Networks Razvan Pascanu, 
Tomas Mikolov, Yoshua Bengio 2012

https://github.com/tensorflow/magenta/tree/master/magenta/models/melody_rnn
https://github.com/tensorflow/magenta/tree/master/magenta/models/melody_rnn
https://github.com/tensorflow/magenta/tree/master/magenta/models/melody_rnn
http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/
http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/
https://www.youtube.com/watch?v=VINCQghQRuM
https://www.youtube.com/watch?v=VINCQghQRuM
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• Recurrent Neural Networks Tutorial:
 ° Introduction to RNNS
 ° Implementing RNN with Python, NumPy, and Theano
 ° Backpropagation through time and vanishing gradients
 ° Implementing a GRU/LSTM RNN with Python and Theano Denny 

Britz 2015 at http://www.wildml.com/2015/09/recurrent-
neural-networks-tutorial-part-1-introduction-to-rnns/

• LONG SHORT-TERM MEMORY, Sepp Hochreiter, Jürgen  
Schmidhuber, 1997

Summary
Recurrent Neural Networks provides the ability to process variable-length inputs 
and outputs of discrete or continuous data.

While the previous feedforward networks were able to process only one input to 
one output (one-to-one scheme), recurrent neural nets introduced in this chapter 
offered the possibility to make conversions between variable-length and fixed-length 
representations adding new operating schemes for deep learning input/output:  
one-to-many, many-to-many, or many-to-one.

The range of applications of RNN is wide. For this reason, we'll study them  
more in depth in the further chapters, in particular how to enhance the predictive 
power of these three modules or how to combine them to build multi-modal, 
question-answering, or translation applications.

In particular, in the next chapter, we'll see a practical example using text embedding 
and recurrent networks for sentiment analysis. This time, there will also be an 
opportunity to review these recurrence units under another library Keras, a deep 
learning library that simplifies writing models for Theano.

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/




Analyzing Sentiment with a 
Bidirectional LSTM

This chapter is a bit more practical to get a better sense of the commonly  
used recurrent neural networks and word embeddings presented in the two  
previous chapters.

It is also an opportunity to introduce the reader to a new application of deep 
learning, sentiment analysis, which is another field of Natural Language Processing 
(NLP). It is a many-to-one scheme, where a variable-length sequence of words has 
to be assigned to one class. An NLP problem where such a scheme can be used 
similarly is language detection (english, french, german, italian, and so on).

While the previous chapter demonstrated how to build a recurrent neural network 
from scratch, this chapter shows how a high-level library built on top of Theano, 
Keras, can help implement and train the model with prebuilt modules. Thanks to  
this example, the reader should be able to decide when to use Keras in their projects.

The following points are developed in this chapter:

• A recap of recurrent neural networks and word embeddings
• Sentiment analysis
• The Keras library
• Bidirectional recurrent networks

Automated sentiment analysis is the problem of identifying opinions expressed in 
text. It normally involves the classification of text into categories such as positive, 
negative, and neutral. Opinions are central to almost all human activities and they  
are key influencers of our behaviors.
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Recently, neural networks and deep learning approaches have been used to build 
sentiment analysis systems. Such systems have the ability to automatically learn a  
set of features to overcome the drawbacks of handcrafted approaches.

Recurrent Neural Networks (RNN) have been proved in the literature to be a  
very useful technique to represent sequential inputs, such as text. A special  
extension of recurrent neural networks called Bi-directional Recurrent Neural 
Networks (BRNN) can capture both the preceding and the following contextual 
information in a text.

In this chapter, we'll present an example to show how a bidirectional recurrent 
neural network using the Long Short Term Memory (LSTM) architecture can be 
used to deal with the problem of the sentiment analysis. We aim to implement a 
model in which, given an input of text (that is, a sequence of words), the model 
attempts to predict whether it is positive, negative, or neutral.

Installing and configuring Keras
Keras is a high-level neural network API, written in Python and capable of running 
on top of either TensorFlow or Theano. It was developed to make implementing 
deep learning models as fast and easy as possible for research and development.  
You can install Keras easily using conda, as follows:

conda install keras

When writing your Python code, importing Keras will tell you which backend  
is used:

>>> import keras
Using Theano backend.
Using cuDNN version 5110 on context None
Preallocating 10867/11439 Mb (0.950000) on cuda0
Mapped name None to device cuda0: Tesla K80 (0000:83:00.0)
Mapped name dev0 to device cuda0: Tesla K80 (0000:83:00.0)
Using cuDNN version 5110 on context dev1
Preallocating 10867/11439 Mb (0.950000) on cuda1
Mapped name dev1 to device cuda1: Tesla K80 (0000:84:00.0)
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If you have installed Tensorflow, it might not use Theano. To specify which backend 
to use, write a Keras configuration file, ~/.keras/keras.json:

{
    "epsilon": 1e-07,
    "floatx": "float32",
    "image_data_format": "channels_last",
    "backend": "theano"
}

It is also possible to specify the Theano backend directly with the environment 
variable:

KERAS_BACKEND=theano python

Note that the device used is the device we specified for Theano in the ~/.theanorc 
file. It is also possible to modify these variables with Theano environment variables:

KERAS_BACKEND=theano THEANO_FLAGS=device=cuda,floatX=float32,mode=FAST_
RUN python

Programming with Keras
Keras provides a set of methods for data preprocessing and for building models.

Layers and models are callable functions on tensors and return tensors. In Keras, 
there is no difference between a layer/module and a model: a model can be part of 
a bigger model and composed of multiple layers. Such a sub-model behaves as a 
module, with inputs/outputs.

Let's create a network with two linear layers, a ReLU non-linearity in between, and a 
softmax output:

from keras.layers import Input, Dense
from keras.models import Model

inputs = Input(shape=(784,))

x = Dense(64, activation='relu')(inputs)
predictions = Dense(10, activation='softmax')(x)
model = Model(inputs=inputs, outputs=predictions)
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The model module contains methods to get input and output shape for either one or 
multiple inputs/outputs, and list the submodules of our module:

>>> model.input_shape
(None, 784)

>>> model.get_input_shape_at(0)
(None, 784)

>>> model.output_shape
(None, 10)

>>> model.get_output_shape_at(0)
(None, 10)

>>> model.name
'sequential_1'

>>> model.input
/dense_3_input

>>> model.output
Softmax.0

>>> model.get_output_at(0)
Softmax.0

>>> model.layers
[<keras.layers.core.Dense object at 0x7f0abf7d6a90>, <keras.layers.core.Dense object at 
0x7f0abf74af90>]

In order to avoid specify inputs to every layer, Keras proposes a functional  
way of writing models with the Sequential module, to build a new module or 
model composed.

The following definition of the model builds exactly the same model as shown 
previously, with input_dim to specify the input dimension of the block that  
would be unknown otherwise and generate an error:

from keras.models import Sequential
from keras.layers import Dense, Activation

model = Sequential()
model.add(Dense(units=64, input_dim=784, activation='relu'))
model.add(Dense(units=10, activation='softmax'))
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The model is considered a module or layer that can be part of a bigger model:

model2 = Sequential()
model2.add(model)
model2.add(Dense(units=10, activation='softmax'))

Each module/model/layer can be compiled then and trained with data :

model.compile(optimizer='rmsprop',
              loss='categorical_crossentropy',
              metrics=['accuracy'])
model.fit(data, labels)

Let us see Keras in practice.

SemEval 2013 dataset
Let us start by preparing the data. In this chapter, we will use the standard  
dataset used in the supervised task of Twitter sentiment classification (message-level) 
presented in the SemEval 2013 competition. It contains 3662 tweets as a training  
set, 575 tweets as a development set, and 1572 tweets as a testing set. Each sample in 
this dataset consists of the tweet ID, the polarity (positive, negative, or neutral) and 
the tweet.

Let's download the dataset:

wget http://alt.qcri.org/semeval2014/task9/data/uploads/semeval2013_
task2_train.zip
wget http://alt.qcri.org/semeval2014/task9/data/uploads/semeval2013_
task2_dev.zip
wget http://alt.qcri.org/semeval2014/task9/data/uploads/semeval2013_
task2_test_fixed.zip
unzip semeval2013_task2_train.zip
unzip semeval2013_task2_dev.zip
unzip semeval2013_task2_test_fixed.zip

A refers to subtask A, which is message-level sentiment classification our aim of study 
in this chapter, where B refers to subtask B term level sentiment analysis.

The input directories do not contain the labels, just the tweets. full contains one 
more level of classification, subjective or objective. Our interest is in the gold or 
cleansed directories.
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Let's use the script to convert them:

pip install bs4
python download_tweets.py train/cleansed/twitter-train-cleansed-A.tsv 
> sem_eval2103.train
python download_tweets.py dev/gold/twitter-dev-gold-A.tsv > sem_
eval2103.dev
python download_tweets.py SemEval2013_task2_test_fixed/gold/twitter-
test-gold-A.tsv > sem_eval2103.test

Preprocessing text data
As we know, it is common to use URLs, user mentions, and hashtags frequently on 
Twitter. Thus, first we need to preprocess the tweets as follow.

Ensure that all the tokens are separated using the space. Each tweet is lowercased.

The URLs, user mentions, and hashtags are replaced by the <url>, <user>, and 
<hashtag> tokens respectively. This step is done using the process function, it takes 
a tweet as input, tokenizes it using the NLTK TweetTokenizer, preprocesses it, and 
returns the set of words (token) in the tweet:

import re
from nltk.tokenize import TweetTokenizer

def process(tweet):
  tknz = TweetTokenizer()
  tokens = tknz.tokenize(tweet)
  tweet = " ".join(tokens)
  tweet = tweet.lower()
  tweet = re.sub(r'http[s]?://(?:[a-z]|[0-9]|[$-_@.&amp;+]|[!*\
(\),]|(?:%[0-9a-f][0-9a-f]))+', '<url>', tweet) # URLs
  tweet = re.sub(r'(?:@[\w_]+)', '<user>', tweet)  # user-mentions
  tweet = re.sub(r'(?:\#+[\w_]+[\w\'_\-]*[\w_]+)', '<hashtag>', tweet)  
# hashtags
  tweet = re.sub(r'(?:(?:\d+,?)+(?:\.?\d+)?)', '<number>', tweet)  # 
numbers
  return tweet.split(" ")
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For example, if we have the tweet RT @mhj: just an example! :D http://
example.com #NLP, the function process is as follows:

tweet = 'RT @mhj: just an example! :D http://example.com #NLP'
print(process(tweet))

returns

[u'rt', u'\<user\>', u':', u'just', u'an', u'example', u'!', u':d', 
u'\<url\>', u'\<hashtag\>']

The following function is used to read the datasets and return a list of tuples, where 
each tuple represents one sample of (tweet, class), with the class an integer in {0, 1, or 
2} defining the polarity:

def read_data(file_name):
  tweets = []
  labels = []
  polarity2idx = {'positive': 0, 'negative': 1, 'neutral': 2}
  with open(file_name) as fin:
    for line in fin:
      _, _, _, _, polarity, tweet = line.strip().split("\t")
      tweet = process(tweet)
      cls = polarity2idx[polarity]
      tweets.append(tweet)
      labels.append(cls)
  return tweets, labels

train_file = 'sem_eval2103.train'
dev_file = 'sem_eval2103.dev'

train_tweets, y_train = read_data(train_file)
dev_tweets, y_dev = read_data(dev_file)

Now, we can build the vocabulary, which is a dictionary to map each word to a 
fixed index. The following function receives as input a set of data and returns the 
vocabulary and maximum length of the tweets:

def get_vocabulary(data):
  max_len = 0
  index = 0
  word2idx = {'<unknown>': index}
  for tweet in data:
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    max_len = max(max_len, len(tweet))
    for word in tweet:
      if word not in word2idx:
        index += 1
        word2idx[word] = index
  return word2idx, max_len

word2idx, max_len = get_vocabulary(train_tweets)
vocab_size = len(word2idx)

We also need a function to transfer each tweet or set of tweets into the indices based 
on the vocabulary if the words exist, or replacing out-of-vocabulary (OOV) words 
with the unknown token (index 0) as follows:

def transfer(data, word2idx):
  transfer_data = []
  for tweet in data:
    tweet2vec = []
    for word in tweet:
      if word in word2idx:
        tweet2vec.append(word2idx[word])
      else:
        tweet2vec.append(0)
    transfer_data.append(tweet2vec)
  return transfer_data

X_train = transfer(train_tweets, word2idx)
X_dev  = transfer(dev_tweets, word2idx)

We can save some memory:

del train_tweets, dev_tweets

Keras provides a helper method to pad the sequences to ensure they all have the 
same length, so that a batch of sequences can be represented by a tensor, and use 
optimized operations on tensors, either on a CPU or on a GPU. 
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By default, the method pads at the beginning, which helps get us better  
classification results:

from keras.preprocessing.sequence import pad_sequences
X_train = pad_sequences(X_train, maxlen=max_len, truncating='post')
X_dev = pad_sequences(X_dev, maxlen=max_len, truncating='post')

Lastly, Keras provides a method to convert the classes into their one-hot encoding 
representation, by adding a dimension:

With Keras to_categorical method:

from keras.utils.np_utils import to_categorical
y_train = to_categorical(y_train)
y_dev = to_categorical(y_dev)

Designing the architecture for the model
The main blocks of the model in this example will be the following:

• First, the words of the input sentence are mapped to vectors of real numbers. 
This step is called vector representation of words or word embedding  
(for more details, see Chapter 3, Encoding Word into Vector).
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• Afterwards, this sequence of vectors is represented by one fixed-length 
and real-valued vector using a bi-LSTM encoder. This vector summarizes 
the input sentence and contains semantic, syntactic, and/or sentimental 
information based on the word vectors.

• Finally, this vector is passed through a softmax classifier to classify the 
sentence into positive, negative, or neutral.

Vector representations of words
Word embeddings are an approach to distributional semantics that represents words 
as vectors of real numbers. Such a representation has useful clustering properties, 
since the words that are semantically and syntactically related are represented by 
similar vectors (see Chapter 3, Encoding Word into Vector).

The main aim of this step is to map each word into a continuous, low-dimensional, 
and real-valued vector, which can later be used as an input to any model. All the 
word vectors are stacked into a matrix d NE ×∈� ; here, N is the vocabulary size and 
d the vector dimension. This matrix is called the embedding layer or the lookup table 
layer. The embedding matrix can be initialized using a pre-trained model such as 
Word2vec or Glove.

In Keras, we can simply define the embedding layer as follows:

from keras.layers import Embedding
d = 100
emb_layer = Embedding(vocab_size + 1, output_dim=d, input_length=max_
len)

The first parameter represents the vocabulary size, output_dim is the vector 
dimension, and input_length is the length of the input sequences.

Let us add this layer as the input layer to the model and declare the model as a 
sequential model:

from keras.models import Sequential
model = Sequential()
model.add(emb_layer)



Chapter 5

[ 127 ]

Sentence representation using bi-LSTM
A recurrent neural network has the ability to represent sequences such as sentences. 
However, in practice, learning long-term dependencies with a vanilla RNN is 
difficult due to vanishing/exploding gradients. As presented in the previous 
chapter, Long Short-Term Memory (LSTM) networks were designed to have more 
persistent memory (that is, state), specialized in keeping and transmitting long-
term information, making them very useful for capturing long-term dependencies 
between the elements of a sequence.

LSTM units are the basic components of the model used in this chapter.

Keras proposes a method, TimeDistributed, to clone any model in multiple time 
steps and make it recurrent. But for commonly used recurrent units such as LSTM, 
there already exists a module in Keras:

from keras.layers import LSTM
rnn_size = 64
lstm = LSTM(rnn_size, input_shape=(max_len, d))

The following is identical:

lstm = LSTM(rnn_size, input_dim=d, input_length=max_len)

And for the subsequent layers, we do not need to specify the input size (this is the 
case since the LSTM layer comes after the embedding layer), thus we can define the 
lstm unit simply as follows:

lstm = LSTM(rnn_size)

Last but not least, in this model, we'd like to use a bidirectional LSTM. It has proved 
to lead to better results, capturing the meaning of the current word given the 
previous words, as well as words appearing after:
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To make this unit process the input bidirectionally, we can simply use Bidirectional, 
a bidirectional wrapper for RNNs:

from keras.layers import Bidirectional
bi_lstm = Bidirectional(lstm)
model.add(bi_lstm)

Outputting probabilities with the softmax 
classifier
Finally, we can pass the vector obtained from bi_lstm to a softmax classifier  
as follows:

from keras.layers import Dense, Activation

nb_classes = 3
fc = Dense(nb_classes)
classifier = Activation('softmax')
model.add(fc)
model.add(classifier)

Now, let us print the summary of the model:
print(model.summary())

Which will end with the results:

Using Theano backend:

__________________________________________________________________________________________

Layer (type)                      Output Shape        Param #         Connected to                     

=========================================================================================

embedding_1 (Embedding)           (None, 30, 100)     10000100    embedding_input_1[0][0]          

_________________________________________________________________________________________

bidirectional_1 (Bidirectional)   (None, 128)            84480          embedding_1[0][0]                

__________________________________________________________________________________________

dense_1 (Dense)                   (None, 3)                387      bidirectional_1[0][0]            

__________________________________________________________________________________________

activation_1 (Activation)         (None, 3)                  0              dense_1[0][0]                    

=========================================================================================

Total params: 10,084,967

Trainable params: 10,084,967

Non-trainable params: 0

__________________________________________________________________________________________
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Compiling and training the model
Now that the model is defined, it is ready to be compiled. To compile the model 
in Keras, we need to determine the optimizer, the loss function, and optionally the 
evaluation metrics. As we mentioned previously, the problem is to predict if the 
tweet is positive, negative, or neutral. This problem is known as a multi-category 
classification problem. Thus, the loss (or the objective) function that will be used in 
this example is the categorical_crossentropy. We will use the rmsprop optimizer 
and the accuracy evaluation metric.

In Keras, you can find state-of-the-art optimizers, objectives, and evaluation metrics 
implemented. Compiling the model in Keras is very easy using the compile function:

model.compile(optimizer='rmsprop',
          loss='categorical_crossentropy',
          metrics=['accuracy'])

We have defined the model and compiled it, and it is now ready to be trained.  
We can train or fit the model on the defined data by calling the fit function.

The training process runs for a certain number of iterations through the dataset, 
called epochs, which can be specified using the epochs parameter. We can also set 
the number of instances that are fed to the model at each step using the batch_size 
argument. In this case, we will use a small number of epochs = 30 and use a small 
batch size of 10. We can also evaluate the model during training by explicitly feeding 
the development set using the validation_data parameter, or choosing a sub set 
from the training set using the validation_split parameter. In this case, we will 
use the development set that we defined previously:

model.fit(x=X_train, y=y_train, batch_size=10, epochs=30, validation_
data=[X_dev, y_dev])
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Evaluating the model
We have trained the model on the train test and now we can evaluate the 
performance of the network on the test set. This can be done using the evaluation() 
function. This function returns the loss value and the metrics values for the model  
in test mode:

test_file = 'sem_eval2103.test'
test_tweets, y_test = read_data(test_file)

X_test  = transfer(test_tweets, word2idx)

del test_twee 

X_test = pad_sequences(X_test, maxlen=max_len, truncating='post')

y_test = to_categorical(y_test)

test_loss, test_acc = model.evaluate(X_test, y_test)

print("Testing loss: {:.5}; Testing Accuracy: {:.2%}" .format(test_
loss, test_acc))

Saving and loading the model
To save the weights of the Keras model, simply call the save function, and the model 
is serialized into .hdf5 format:

model.save('bi_lstm_sentiment.h5')

To load the model, use the load_model function provided by Keras as follows:

from keras.models import load_model
loaded_model = load_model('bi_lstm_sentiment.h5')

It is now ready for evaluation and does not need to be compiled. For example, on the 
same test set we must obtain the same results:

test_loss, test_acc = loaded_model.evaluate(X_test, y_test)
print("Testing loss: {:.5}; Testing Accuracy: {:.2%}" .format(test_
loss, test_acc))
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Running the example
To run the model, we can execute the following command line:

python bilstm.py

Further reading
Please refer to the following articles:

• SemEval Sentiment Analysis in Twitter https://www.cs.york.ac.uk/
semeval-2013/task2.html

• Personality insights with IBM Watson demo https://personality-insights-
livedemo.mybluemix.net/

• Tone analyzer https://tone-analyzer-demo.mybluemix.net/
• Keras https://keras.io/
• Deep Speech: Scaling up end-to-end speech recognition, Awni Hannun,  

Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen,  
Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates,  
Andrew Y. Ng, 2014

• Speech Recognition with Deep Recurrent Neural Networks, Alex Graves, 
Abdel-Rahman Mohamed, Geoffrey Hinton, 2013

• Deep Speech 2: End-to-End Speech Recognition in English and Mandarin, 
Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, 
Bryan Catanzaro, Jingdong Chen, Mike Chrzanowski, Adam Coates, 
Greg Diamos, Erich Elsen, Jesse Engel, Linxi Fan, Christopher Fougner, 
Tony Han, Awni Hannun, Billy Jun, Patrick LeGresley, Libby Lin, Sharan 
Narang, Andrew Ng, Sherjil Ozair, Ryan Prenger, Jonathan Raiman, Sanjeev 
Satheesh,David Seetapun, Shubho Sengupta, Yi Wang, Zhiqian Wang, Chong 
Wang, Bo Xiao, Dani Yogatama, Jun Zhan, Zhenyao Zhu, 2015

https://tone-analyzer-demo.mybluemix.net/
https://tone-analyzer-demo.mybluemix.net/
https://keras.io/
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Summary
This chapter acted as a review of the basic concepts introduced in the previous 
chapters, while introducing a new application, sentiment analysis, and a high-level 
library, Keras, to simplify the development of models with the Theano engine.

Among these basic concepts were recurrent networks, word embeddings, batch 
sequence padding, and class one-hot encoding. Bidirectional recurrency was 
presented to improve the results.

In the next chapter, we'll see how to apply recurrency to images, with another 
library, Lasagne, which is more lightweight than Keras, and will let you mix the 
library modules with your own code for Theano more smoothly.



Locating with Spatial 
Transformer Networks

In this chapter, the NLP field is left to come back to images, and get an example 
of application of recurrent neural networks to images. In Chapter 2, Classifying 
Handwritten Digits with a Feedforward Network we addressed the case of image 
classification, consisting of predicting the class of an image. Here, we'll address 
object localization, a common task in computer vision as well, consisting of 
predicting the bounding box of an object in the image.

While Chapter 2, Classifying Handwritten Digits with a Feedforward Network solved the 
classification task with neural nets built with linear layers, convolutions, and non-
linarites, the spatial transformer is a new module built on very specific equations 
dedicated to the localization task.

In order to locate multiple objects in the image, spatial transformers are composed 
with recurrent networks. This chapter takes the opportunity to show how to use 
prebuilt recurrent networks in Lasagne, a library on top of Theano that brings extra 
modules, and helps you develop your neural networks very fast with pre-built 
components, while not changing the way you build and handle nets with Theano.

To sum up, the list of topics is composed of:

• An introduction to the Lasagne library 
• Spatial transformer networks
• Classification network with spatial transformers
• Recurrent modules with Lasagne
• Recurrent read of digits
• Unsupervised training with hinge loss functions
• Region-based object localization neural nets
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MNIST CNN model with Lasagne
The Lasagne library has packaged layers and tools to handle neural nets easily.  
Let's first install the latest version of Lasagne:

pip install --upgrade https://github.com/Lasagne/Lasagne/archive/master.
zip

Let us reprogram the MNIST model from Chapter 2, Classifying Handwritten Digits 
with a Feedforward Network with Lasagne:

def model(l_input, input_dim=28, num_units=256, num_classes=10, p=.5):

    network = lasagne.layers.Conv2DLayer(
            l_input,  
            num_filters=32, filter_size=(5, 5),
            nonlinearity=lasagne.nonlinearities.rectify,
            W=lasagne.init.GlorotUniform())

    network = lasagne.layers.MaxPool2DLayer(network, pool_size=(2, 2))

    network = lasagne.layers.Conv2DLayer(
            network,  
            num_filters=32,  
            filter_size=(5, 5),
            nonlinearity=lasagne.nonlinearities.rectify)

    network = lasagne.layers.MaxPool2DLayer(network, pool_size=(2, 2))

    if num_units > 0:
        network = lasagne.layers.DenseLayer(
                lasagne.layers.dropout(network, p=p),
                num_units=num_units,
                nonlinearity=lasagne.nonlinearities.rectify)

    if (num_units > 0) and (num_classes > 0):
        network = lasagne.layers.DenseLayer(
                lasagne.layers.dropout(network, p=p),
                num_units=num_classes,
                nonlinearity=lasagne.nonlinearities.softmax)

    return network
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The layers are layer0_input, conv1_out, pooled_out, conv2_out, pooled2_out, 
hidden_output. They are built with pre-built modules, such as, InputLayer, 
Conv2DLayer, MaxPool2DLayer, DenseLayer, dropout non-linearities such as  
rectify or softmax, and initialization such as GlorotUniform.

To connect the network graph composed of modules with the input symbolic var 
and get the output var, use the following code:

input_var = T.tensor4('inputs')
l_input = lasagne.layers.InputLayer(shape=(None, 1, 28, 28),  
            input_var=input_var)
network = mnist_cnn.model(l_input)
prediction = lasagne.layers.get_output(network)

Or use this code:

l_input = lasagne.layers.InputLayer(shape=(None, 1, 28, 28))
network = mnist_cnn.model(l_input)

input_var = T.tensor4('inputs')
prediction = lasagne.layers.get_output(network, input_var)

A very convenient feature is that you can print the output shape of any module:

print(l_input.output_shape)

Lasagne's get_all_params method lists the parameters of the model:

params = lasagne.layers.get_all_params(network, trainable=True)
for p in params:
    print p.name

Lastly, Lasagne comes with different learning rules, such as RMSprop, Nesterov 
Momentum, Adam, and Adagrad:

target_var = T.ivector('targets')
loss = lasagne.objectives.categorical_crossentropy(prediction, target_
var)
loss = loss.mean()

updates = lasagne.updates.nesterov_momentum(
        loss, params, learning_rate=0.01, momentum=0.9)

train_fn = theano.function([input_var, target_var], loss, 
updates=updates)
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All other things remain unchanged.

To test our MNIST model, download the MNIST dataset:

wget http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz -P /
sharedfiles

Train an MNIST classifier for digit classification:

python 1-train-mnist.py

The model parameters are saved in model.npz. The accuracy is again above 99%.

A localization network
In Spatial Transformer Networks (STN), instead of applying the network directly to 
the input image signal, the idea is to add a module to preprocess the image and crop 
it, rotate it, and scale it to fit the object, to assist in classification:

Spatial Transformer Networks

For that purpose, STNs use a localization network to predict the affine 
transformation parameters and process the input:

Spatial transformer networks
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In Theano, differentiation through the affine transformation is automatic, we simply 
have to connect the localization net with the input of the classification net through 
the affine transformation.

First, we create a localization network not very far from the MNIST CNN model,  
to predict six parameters of the affine transformation:

l_in = lasagne.layers.InputLayer((None, dim, dim))
l_dim = lasagne.layers.DimshuffleLayer(l_in, (0, 'x', 1, 2))
l_pool0_loc = lasagne.layers.MaxPool2DLayer(l_dim, pool_size=(2, 2))
l_dense_loc = mnist_cnn.model(l_pool0_loc,  
       input_dim=dim,  
       num_classes=0)

b = np.zeros((2, 3), dtype=theano.config.floatX)
b[0, 0] = 1.0
b[1, 1] = 1.0

l_A_net = lasagne.layers.DenseLayer(
    l_dense_loc,
    num_units=6,
    name='A_net',
    b=b.flatten(),
    W=lasagne.init.Constant(0.0),
    nonlinearity=lasagne.nonlinearities.identity)

Here, we simply add to the input array, with DimshuffleLayer, a channel 
dimension that will have only value 1. Such a dimension add is named  
a broadcast.

The pooling layer resizes the input image to 50x50, which is enough to determine the 
position of the digit.

The localization layer weight is initiated with zeros, except for the bias, which is 
initiated to the Identity affine parameters; the STN modules will not have any impact 
at the beginning and the full input image will be transmitted.

To crop given the affine parameters:

l_transform = lasagne.layers.TransformerLayer(
    incoming=l_dim,
    localization_network=l_A_net,
    downsample_factor=args.downsample)
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The down_sampling_factor enables us to define the size of the output image with 
respect to the input. In this case, it is three, meaning the image will be 33x33—not 
very far from our MNIST digit size of 28x28. Lastly, we simply add our MNIST CNN 
model to classify the output:

l_out = mnist_cnn.model(l_transform,  
     input_dim=dim,  
     p=sh_drp,  
     num_units=400)

To test the classifier, let us create images of 100x100 pixels, with some distortions and 
one digit:

python create_mnist_sequence.py --nb_digits=1

Plot the first three images (corresponding to 1, 0, 5):

python plot_data.py mnist_sequence1_sample_8distortions_9x9.npz

Let's run the command to train the model:

python 2-stn-cnn-mnist.py
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Here again, the accuracy gets above 99% when the digit is alone without distortions, 
which is typically not possible with the simple MNIST CNN model alone, and above 
96.9% with distortions.

The command to plot the crops is:

python plot_crops.py res_test_2.npz

It gives us the following result:

And with distortions:

STN can be thought of as a module to include in any network, at any place between 
two layers. To improve the classification results further, adding multiple STNs 
between different layers of a classification network helps get better results.
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Here is an example of a network with two branches inside the network, each with  
its SPN that will, when unsupervised, try to catch different parts of the image to 
classify it:

(Spatial transformer networks paper, Jaderberg et al., 2015)

Recurrent neural net applied to images
The idea is to use recurrency to read multiple digits, instead of just one:

https://arxiv.org/find/cs/1/au:+Jaderberg_M/0/1/0/all/0/1


Chapter 6

[ 141 ]

In order to read multiple digits, we simply replace the localization feedforward 
network with a recurrent network that will output multiple affine transformations 
corresponding to each digit:

From the previous example, we replace the fully connected layer with the GRU layer:

l_conv2_loc = mnist_cnn.model(l_pool0_loc,  
     input_dim=dim,  
     p=sh_drp,  
     num_units=0)

class Repeat(lasagne.layers.Layer):
    def __init__(self, incoming, n, **kwargs):
        super(Repeat, self).__init__(incoming, **kwargs)
        self.n = n

    def get_output_shape_for(self, input_shape):
        return tuple([input_shape[0], self.n] + list(input_shape[1:]))

    def get_output_for(self, input, **kwargs):
        tensors = [input]*self.n
        stacked = theano.tensor.stack(*tensors)
        dim = [1, 0] + range(2, input.ndim+1)
        return stacked.dimshuffle(dim)

l_repeat_loc = Repeat(l_conv2_loc, n=num_steps)
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l_gru = lasagne.layers.GRULayer(l_repeat_loc, num_units=num_rnn_units,
unroll_scan=True)

l_shp = lasagne.layers.ReshapeLayer(l_gru, (-1, num_rnn_units))  

This outputs a tensor of dimension (None, 3, 256), where the first dimension is the 
batch size, 3 is the number of steps in the GRU, and 256 is the hidden layer size. On 
top of this layer, we simply add the same fully connected layer as before to output 
three identity images at the beginning:

b = np.zeros((2, 3), dtype=theano.config.floatX)
b[0, 0] = 1.0
b[1, 1] = 1.0

l_A_net = lasagne.layers.DenseLayer(
    l_shp,
    num_units=6,
    name='A_net',
    b=b.flatten(),
    W=lasagne.init.Constant(0.0),
    nonlinearity=lasagne.nonlinearities.identity)

l_conv_to_transform = lasagne.layers.ReshapeLayer(
    Repeat(l_dim, n=num_steps), [-1] + list(l_dim.output_shape[-3:]))

l_transform = lasagne.layers.TransformerLayer(
    incoming=l_conv_to_transform,
    localization_network=l_A_net,
    downsample_factor=args.downsample)

l_out = mnist_cnn.model(l_transform, input_dim=dim, p=sh_drp, num_
units=400)

To test the classifier, let us create images of 100x100 pixels with some distortions,  
and three digits this time:

python create_mnist_sequence.py --nb_digits=3 --output_dim=100
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Plot the first three images (corresponding to sequences 296, 490, 125):

python plot_data.py mnist_sequence3_sample_8distortions_9x9.npz



Locating with Spatial Transformer Networks

[ 144 ]

Let's run the command to train our recurrent model:

python 3-recurrent-stn-mnist.py
Epoch 0 Acc Valid 0.268833333333, Acc Train = 0.268777777778, Acc Test = 0.272466666667
Epoch 1 Acc Valid 0.621733333333, Acc Train = 0.611116666667, Acc Test = 0.6086
Epoch 2 Acc Valid 0.764066666667, Acc Train = 0.75775, Acc Test = 0.764866666667
Epoch 3 Acc Valid 0.860233333333, Acc Train = 0.852294444444, Acc Test = 0.859566666667
Epoch 4 Acc Valid 0.895333333333, Acc Train = 0.892066666667, Acc Test = 0.8977
Epoch 53 Acc Valid 0.980433333333, Acc Train = 0.984261111111, Acc Test = 0.97926666666

The classification accuracy is 99.3%.

Plot the crops:

python plot_crops.py res_test_3.npz
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Unsupervised learning with  
co-localization
The first layers of the digit classifier trained in Chapter 2, Classifying Handwritten 
Digits with a Feedforward Network as an encoding function to represent the image in  
an embedding space, as for words:

It is possible to train unsurprisingly the localization network of the spatial 
transformer network by minimizing the hinge loss objective function on  
random sets of two images supposed to contain the same digit:

Minimizing this sum leads to modifying the weights in the localization network,  
so that two localized digits become closer than two random crops.

Here are the results:

(Spatial transformer networks paper, Jaderberg et al., 2015)

https://arxiv.org/find/cs/1/au:+Jaderberg_M/0/1/0/all/0/1
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Region-based localization networks
Historically, the basic approach in object localization was to use a classification 
network in a sliding window; it consists of sliding a window one pixel by one pixel 
in each direction and applying a classifier at each position and each scale in the 
image. The classifier learns to say if the object is present and centered. It requires a 
large amount of computations since the model has to be evaluated at every position 
and scale.

To accelerate such a process, the Region Proposal Network (RPN) in the Fast-R-CNN 
paper from the researcher Ross Girshick consists of transforming the fully connected 
layers of a neural net classifier such as MNIST CNN into convolutional layers as well; 
in fact, network dense on 28x28 image, there is no difference between a convolution 
and a linear layer when the convolution kernel has the same dimensions as the input. 
So, any fully connected layers can be rewritten as convolutional layers, with the 
same weights and the appropriate kernel dimensions, which enables the network 
to work on a wider image than 28x28, at any size, outputting a feature map with a 
classification score at each position. The only difference may come from the stride of 
the whole network, which can be set different to 1 and can be large (a few 10 pixels) 
with convolution kernels set to stride different to 1 in order to reduce the number 
of evaluation positions and thus the computations. Such a transformation is worth 
because the convolutions are very efficient:

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
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An end-to-end network has been designed, taking ideas from deconvolution 
principles where an output feature map gives all bounding boxes at once: You 
Only Look Once (YOLO) architecture predicts B possible bounding boxes for each 
position in the feature map. Each bounding box is defined by its coordinates (x, y, 
w, h) in proportion to the whole image as a regression problem, and a confidence 
(probability) that corresponds to the Intersection over Union (IOU) between the box 
and the true box. Comparable approaches are proposed with SSD models.

Lastly, segmentation networks introduced in Chapter 8, Translating and  
Explaining with Encoding – decoding Networks can also be considered as neural  
net implementations towards localizing objects.

Further reading
You can further refer to these sources for more information:

• Spatial Transformer Networks, Max Jaderberg, Karen Simonyan, Andrew 
Zisserman, Koray Kavukcuoglu, Jun 2015

• Recurrent Spatial Transformer Networks, Søren Kaae Sønderby, Casper Kaae 
Sønderby, Lars Maaløe, Ole Winther, Sept 2015

• Original code: https://github.com/skaae/recurrent-spatial-
transformer-code

• Google Street View Character Recognition, Jiyue Wang, Peng Hui How
• Reading Text in the Wild with Convolutional Neural Networks, Max 

Jaderberg, Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, 2014
• Multi-digit Number Recognition from Street View Imagery using Deep 

Convolutional Neural Networks, Ian J. Goodfellow, Yaroslav Bulatov,  
Julian Ibarz, Sacha Arnoud, Vinay Shet, 2013

• Recognizing Characters From Google Street View Images, Guan Wang, 
Jingrui Zhang

• Synthetic Data and Artificial Neural Networks for Natural Scene Text 
Recognition, Max Jaderberg, Karen Simonyan, Andrea Vedaldi, Andrew 
Zisserman, 2014

• R-CNN minus R, Karel Lenc, Andrea Vedaldi, 2015
• Fast R-CNN, Ross Girshick, 2015
• Faster R-CNN: Towards Real-Time Object Detection with Region Proposal 

Networks, Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun, 2015
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• You Only Look Once: Unified, Real-Time Object Detection, Joseph 
Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, Jun 2015

• YOLO demo in real time http://pjreddie.com/darknet/yolo/
• YOLO9000: Better, Faster, Stronger, Joseph Redmon, Ali Farhadi, Dec 2016
• SSD: Single Shot MultiBox Detector, Wei Liu, Dragomir Anguelov, Dumitru 

Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg, 
Dec 2015

• Rich feature hierarchies for accurate object detection and semantic 
segmentation, Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra  
Malik, 2013

• Text Flow: A Unified Text Detection System in Natural Scene Images 
Shangxuan Tian, Yifeng Pan, Chang Huang, Shijian Lu, Kai Yu,  
Chew Lim Tan, 2016

Summary
The spatial transformer layer is an original module to localize an area of the image, 
crop it and resize it to help the classifier focus on the relevant part in the image, and 
increase its accuracy. The layer is composed of differentiable affine transformation, 
for which the parameters are computed through another model, the localization 
network, and can be learned via backpropagation as usual.

An example of the application to reading multiple digits in an image can be inferred  
with the use of recurrent neural units. To simplify our work, the Lasagne library  
was introduced.

Spatial transformers are one solution among many others for localizations;  
region-based localizations, such as YOLO, SSD, or Faster RCNN, provide  
state-of-the-art results for bounding box prediction.

In the next chapter, we'll continue with image recognition to discover how to classify 
full size images that contain a lot more information than digits, such as natural 
images of indoor scenes and outdoor landscapes. In the meantime, we'll continue 
with Lasagne's prebuilt layer and optimization modules.
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Classifying Images with 
Residual Networks

This chapter presents state-of-the-art deep networks for image classification.

Residual networks have become the latest architecture, with a huge improvement in 
accuracy and greater simplicity.

Before residual networks, there had been a long history of architectures, such as 
AlexNet, VGG, Inception (GoogLeNet), Inception v2,v3, and v4. Researchers were 
searching for different concepts and discovered some underlying rules with which to 
design better architectures.

This chapter will address the following topics:

• Main datasets for image classification evaluation
• Network architectures for image classification
• Batch normalization
• Global average pooling
• Residual connections
• Stochastic depth
• Dense connections
• Multi-GPU
• Data augmentation techniques
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Natural image datasets
Image classification usually includes a wider range of objects and scenes than the 
MNIST handwritten digits. Most of them are natural images, meaning images 
that a human being would observe in the real world, such as landscapes, indoor 
scenes, roads, mountains, beaches, people, animals, and automobiles, as opposed to 
synthetic images or images generated by a computer.

To evaluate the performance of image classification networks for natural images, 
three main datasets are usually used by researchers to compare performance:

• Cifar-10, a dataset of 60,000 small images (32x32) regrouped into 10 classes 
only, which you can easily download:
wget https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz -P /
sharedfiles

tar xvzf /sharedfiles/cifar-10-python.tar.gz -C /sharedfiles/

Here are some example images for each class:

Cifar 10 dataset classes with samples https://www.cs.toronto.edu/~kriz/cifar.html
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• Cifar-100, a dataset of 60,000 images, partitioned into 100 classes and 20 
super-classes

• ImageNet, a dataset of 1.2 million images, labeled with a wide range of 
classes (1,000). Since ImageNet is intended for non-commercial use only, it is 
possible to download Food 101, a dataset of 101 classes of meals, and 1,000 
images per class:

wget http://data.vision.ee.ethz.ch/cvl/food-101.tar.gz -P /
sharedfiles

tar xvzf food-101.tar.gz -C /sharedfiles/

Before introducing residual architectures, let us discuss two methods to improve 
classification net accuracy: batch normalization, and global average pooling.

Batch normalization
Deeper networks, with more than 100 layers can help image classification for a few 
hundred classes. The major issue with deep networks is to ensure that the flows of 
inputs, as well as the gradients, are well propagated from one end of the network to 
the other end.

Nevertheless, it is not unusual that nonlinearities in the network get saturated,  
and gradients become null. Moreover, each layer in the network has to adapt to 
constant changes in the distribution of its inputs, a phenomenon known as  
internal covariate shift.

It is known that a network trains faster with input data linearly processed to  
have zero mean and unit variance (known as network input normalization),  
and normalizing each input feature independently, instead of jointly.

To normalize the input of every layer in a network, it is a bit more complicated: 
zeroing the mean of the input will ignore the learned bias of the previous layer,  
and the problem is even worse with unit variance. The parameters of the previous 
layer may grow infinitely, while the loss stays constant, when inputs of the layer  
are normalized.

So, for layer input normalization, a batch normalization layer relearns the scale and 
the bias after normalization:
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Rather than using the entire dataset, it uses the batch to compute the statistics  
for normalization, with a moving average to get closer to entire dataset statistics 
while training.

A batch normalization layer has the following benefits:

• It reduces the influence of bad initializations or too high learning rates
• It increases the accuracy of the net by a margin
• It accelerates the training
• It reduces overfitting, regularizing the model

When introducing batch normalization layers, you can remove dropout, increase the 
learning rate, and reduce L2 weight normalization.

Be careful to place nonlinearity after the BN layer, and to remove bias in the  
previous layer:

l = NonlinearityLayer(
      BatchNormLayer(
        ConvLayer(l_in,
          num_filters=n_filters[0],
          filter_size=(3,3),
          stride=(1,1),
          nonlinearity=None,
          pad='same',
          W=he_norm)
      ),
      nonlinearity=rectify
  )

Global average pooling
Traditionally, the two last layers of a classification net are a fully connected layer and 
a softmax layer. The fully connected layer outputs a number of features equal to the 
number of classes, and the softmax layer normalizes these values to probabilities that 
sum to 1.
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Firstly, it is possible to replace max-pooling layers of stride 2 with new convolutional 
layers of stride 2: all-convolutional networks perform even better.

Secondly, removing the fully connected layer is also possible. If the number of 
featuremaps output by the last convolutional layer is chosen equal to the number 
of classes, a global spatial average reduces each featuremap to a scalar value, 
representing the score for the class averaged at the different macro spatial locations:

Residual connections
While very deep architectures (with many layers) perform better, they are harder to 
train, because the input signal decreases through the layers. Some have tried training 
the deep networks in multiple stages.
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An alternative to this layer-wise training is to add a supplementary connection to 
shortcut a block of layers, named the identity connection, passing the signal without 
modification, in addition to the classic convolutional layers, named the residuals, 
forming a residual block, as shown in the following image:

Such a residual block is composed of six layers.

A residual network is a network composed of multiple residual blocks. Input is 
processed by a first convolution, followed by batch normalization and non-linearity:

For example, for a residual net composed of two residual blocks, and eight 
featuremaps in the first convolution on an input image of size 28x28, the layer  
output shapes will be the following:

InputLayer                       (None, 1, 28, 28)
Conv2DDNNLayer                   (None, 8, 28, 28)
BatchNormLayer                   (None, 8, 28, 28)
NonlinearityLayer                (None, 8, 28, 28)
Conv2DDNNLayer                   (None, 8, 28, 28)
BatchNormLayer                   (None, 8, 28, 28)
NonlinearityLayer                (None, 8, 28, 28)
Conv2DDNNLayer                   (None, 8, 28, 28)
ElemwiseSumLayer                 (None, 8, 28, 28)
BatchNormLayer                   (None, 8, 28, 28)
NonlinearityLayer                (None, 8, 28, 28)
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Conv2DDNNLayer                   (None, 8, 28, 28)
BatchNormLayer                   (None, 8, 28, 28)
NonlinearityLayer                (None, 8, 28, 28)
Conv2DDNNLayer                   (None, 8, 28, 28)
ElemwiseSumLayer                 (None, 8, 28, 28)
BatchNormLayer                   (None, 8, 28, 28)
NonlinearityLayer                (None, 8, 28, 28)
Conv2DDNNLayer                   (None, 16, 14, 14)
BatchNormLayer                   (None, 16, 14, 14)
NonlinearityLayer                (None, 16, 14, 14)
Conv2DDNNLayer                   (None, 16, 14, 14)
Conv2DDNNLayer                   (None, 16, 14, 14)
ElemwiseSumLayer                 (None, 16, 14, 14)
BatchNormLayer                   (None, 16, 14, 14)
NonlinearityLayer                (None, 16, 14, 14)
Conv2DDNNLayer                   (None, 16, 14, 14)
BatchNormLayer                   (None, 16, 14, 14)
NonlinearityLayer                (None, 16, 14, 14)
Conv2DDNNLayer                   (None, 16, 14, 14)
ElemwiseSumLayer                 (None, 16, 14, 14)
BatchNormLayer                   (None, 16, 14, 14)
NonlinearityLayer                (None, 16, 14, 14)
Conv2DDNNLayer                   (None, 32, 7, 7)
BatchNormLayer                   (None, 32, 7, 7)
NonlinearityLayer                (None, 32, 7, 7)
Conv2DDNNLayer                   (None, 32, 7, 7)
Conv2DDNNLayer                   (None, 32, 7, 7)
ElemwiseSumLayer                 (None, 32, 7, 7)
BatchNormLayer                   (None, 32, 7, 7)
NonlinearityLayer                (None, 32, 7, 7)
Conv2DDNNLayer                   (None, 32, 7, 7)
BatchNormLayer                   (None, 32, 7, 7)
NonlinearityLayer                (None, 32, 7, 7)
Conv2DDNNLayer                   (None, 32, 7, 7)
ElemwiseSumLayer                 (None, 32, 7, 7)
BatchNormLayer                   (None, 32, 7, 7)
NonlinearityLayer                (None, 32, 7, 7)
GlobalPoolLayer                  (None, 32)
DenseLayer                       (None, 10)

The number of output featuremaps increase while the size of each output featuremap 
decreases: such a technique in funnel of decreasing featuremap sizes/increasing the 
number of dimensions keeps the number of parameters per layer constant which is 
a common best practice for building networks.
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Three transitions to increase the number of dimensions occur, one before the first 
residual block, a second one after n residual blocks, and a third one after 2xn residual 
blocks. Between each transition, the number of filters are defined in an array:

# 8 -> 8 -> 16 -> 32
n_filters = {0:8, 1:8, 2:16, 3:32}

The dimensional increase is performed by the first layer of the corresponding 
residual block. Since the input is not the same shape as the output, the simple 
identity connection cannot be concatenated with the output of layers of the block, 
and is replaced by a dimensional projection to reduce the size of the output to the 
dimension of the block output. Such a projection can be done with a convolution  
of kernel 1x1 with a stride of 2:

def residual_block(l, transition=False, first=False, filters=16):
    if transition:
        first_stride = (2,2)
    else:
        first_stride = (1,1)

    if first:
        bn_pre_relu = l
    else:
        bn_pre_conv = BatchNormLayer(l)
        bn_pre_relu = NonlinearityLayer(bn_pre_conv, rectify)

    conv_1 = NonlinearityLayer( 
      BatchNormLayer( 
        ConvLayer(bn_pre_relu,  
          num_filters=filters,  
          filter_size=(3,3),  
          stride=first_stride, 
          nonlinearity=None, 
          pad='same', 
          W=he_norm)), 
        nonlinearity=rectify)

    conv_2 = ConvLayer(conv_1, num_filters=filters, filter_size=(3,3), 
stride=(1,1), nonlinearity=None, pad='same', W=he_norm)

  
  # add shortcut connections
    if transition:
        # projection shortcut, as option B in paper
        projection = ConvLayer(bn_pre_relu, num_filters=filters, 
filter_size=(1,1), stride=(2,2), nonlinearity=None, pad='same', 
b=None)
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    elif conv_2.output_shape == l.output_shape:
        projection=l
    else:
        projection = ConvLayer(bn_pre_relu, num_filters=filters, 
filter_size=(1,1), stride=(1,1), nonlinearity=None, pad='same', 
b=None)

    return ElemwiseSumLayer([conv_2, projection])

Some variants of residual blocks have been invented as well.

A wide version (Wide-ResNet) of the previous residual block simply consists of 
increasing the number of outputs per residual blocks by a factor as they come to  
the end:

n_filters = {0:num_filters, 1:num_filters*width, 2:num_
filters*2*width, 3:num_filters*4*width}

A bottleneck version consists of reducing the number of parameters per layer, to 
create a bottleneck that has the effect of dimension reduction, implementing the 
Hebbian theory Neurons that fire together wire together, and to help residual blocks 
capture particular types of pattern in the signal:

Bottlenecks are reductions in both featuremap size and number of output at the  
same time, not keeping the number of parameters constant per layer as in the 
previous practice:

def residual_bottleneck_block(l, transition=False, first=False, 
filters=16):
    if transition:
        first_stride = (2,2)
    else:
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        first_stride = (1,1)

    if first:
        bn_pre_relu = l
    else:
        bn_pre_conv = BatchNormLayer(l)
        bn_pre_relu = NonlinearityLayer(bn_pre_conv, rectify)

    bottleneck_filters = filters / 4

    conv_1 = NonlinearityLayer(BatchNormLayer(ConvLayer(bn_pre_relu, 
num_filters=bottleneck_filters, filter_size=(1,1), stride=(1,1), 
nonlinearity=None, pad='same', W=he_norm)),nonlinearity=rectify)

    conv_2 = NonlinearityLayer(BatchNormLayer(ConvLayer(conv_1, num_
filters=bottleneck_filters, filter_size=(3,3), stride=first_stride, 
nonlinearity=None, pad='same', W=he_norm)),nonlinearity=rectify)

    conv_3 = ConvLayer(conv_2, num_filters=filters, filter_size=(1,1), 
stride=(1,1), nonlinearity=None, pad='same', W=he_norm)

    if transition:
        projection = ConvLayer(bn_pre_relu, num_filters=filters, 
filter_size=(1,1), stride=(2,2), nonlinearity=None, pad='same', 
b=None)
    elif first:
        projection = ConvLayer(bn_pre_relu, num_filters=filters, 
filter_size=(1,1), stride=(1,1), nonlinearity=None, pad='same', 
b=None)
    else:
        projection = l

    return ElemwiseSumLayer([conv_3, projection])

Now, the full network of three stacks of residual blocks is built with:

def model(shape, n=18, num_filters=16, num_classes=10, width=1, 
block='normal'):
  l_in = InputLayer(shape=(None, shape[1], shape[2], shape[3]))
  l = NonlinearityLayer(BatchNormLayer(ConvLayer(l_in, num_filters=n_
filters[0], filter_size=(3,3), stride=(1,1), nonlinearity=None, 
pad='same', W=he_norm)),nonlinearity=rectify)

  l = residual_block(l, first=True, filters=n_filters[1])
  for _ in range(1,n):
      l = residual_block(l, filters=n_filters[1])
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  l = residual_block(l, transition=True, filters=n_filters[2])
  for _ in range(1,n):
      l = residual_block(l, filters=n_filters[2])

  l = residual_block(l, transition=True, filters=n_filters[3])
  for _ in range(1,n):
      l = residual_block(l, filters=n_filters[3])

  bn_post_conv = BatchNormLayer(l)
  bn_post_relu = NonlinearityLayer(bn_post_conv, rectify)
  avg_pool = GlobalPoolLayer(bn_post_relu)
  return DenseLayer(avg_pool, num_units=num_classes, W=HeNormal(), 
nonlinearity=softmax)

The command for a MNIST training:

  python train.py --dataset=mnist --n=1 --num_filters=8 --batch_size=500

This gives a top-1 accuracy of 98%.

On Cifar 10, residual networks with more than a 100 layers require the batch size to 
be reduced to 64 to fit into the GPU's memory:

• For ResNet-110 (6 x 18 + 2):
  python train.py --dataset=cifar10 --n=18 --num_filters=16 
--batch_size=64

• ResNet-164 (6 x 27 + 2):
  python train.py --dataset=cifar10 --n=27 --num_filters=16 
--batch_size=64

• Wide ResNet-110:
  python train.py --dataset=cifar10 --n=18 --num_filters=16 
--width=4 --batch_size=64

• With ResNet-bottleneck-164:
  python train.py --dataset=cifar10 --n=18 --num_filters=16 
--block=bottleneck --batch_size=64

• For Food-101, I reduce further the batch size for ResNet 110:

  python train.py --dataset=food101 --batch_size=10 --n=18 --num_
filters=16
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Stochastic depth
Since the propagation of the signal through the layers might be prone to errors in 
any of the residual blocks, the idea of stochastic depth is to train the network to 
robustness by randomly removing some of the residual blocks, and replacing them 
with an identity connection.

First, the training is much faster, since the number of parameters is lower. Second, 
 in practice, the robustness is proven and it provides better classification results:

Dense connections
Stochastic depth skips some random layers by creating a direct connection. Going 
one step further, instead of removing some random layers, another way to do the 
same thing is to add an identity connection with previous layers:

A dense block (densely connected convolutional networks)
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As for residual blocks, a densely connected convolutional network consists of 
repeating dense blocks to create a stack of layer blocks:

A network with dense blocks (densely connected convolutional networks)

Such an architecture choice follows the same principles as those seen in  
Chapter 10, Predicting Times Sequence with Advanced RNN, with highway networks:  
the identity connection helps the information to be correctly propagated and  
back-propagated through the network, reducing the effect of exploding/vanishing 
gradients when the number of layers is high.

In Python, we replace our residual block with a densely connected block:

def dense_block(network, transition=False, first=False, filters=16):
    if transition:
        network = NonlinearityLayer(BatchNormLayer(network), 
nonlinearity=rectify)
        network = ConvLayer(network,network.output_shape[1], 1, 
pad='same', W=he_norm, b=None, nonlinearity=None)
        network = Pool2DLayer(network, 2, mode='average_inc_pad')

    network = NonlinearityLayer(BatchNormLayer(network), 
nonlinearity=rectify)
    conv = ConvLayer(network,filters, 3, pad='same', W=he_norm, 
b=None, nonlinearity=None)
    return ConcatLayer([network, conv], axis=1)

Note also that batch normalization is done feature by feature and, since the output 
of every block is already normalized, a second renormalization is not necessary. 
Replacing the batch normalization layer by a simple affine layer learning the scale 
and bias on the concated normalized features is sufficient:

def dense_fast_block(network, transition=False, first=False, 
filters=16):
    if transition:
        network = NonlinearityLayer(BiasLayer(ScaleLayer(network)), 
nonlinearity=rectify)
        network = ConvLayer(network,network.output_shape[1], 1, 
pad='same', W=he_norm, b=None, nonlinearity=None)
        network = BatchNormLayer(Pool2DLayer(network, 2, 
mode='average_inc_pad'))
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    network = NonlinearityLayer(BiasLayer(ScaleLayer(network)), 
nonlinearity=rectify)
    conv = ConvLayer(network,filters, 3, pad='same', W=he_norm, 
b=None, nonlinearity=None)
    return ConcatLayer([network, BatchNormLayer(conv)], axis=1)

For training DenseNet-40:

python train.py --dataset=cifar10 --n=13 --num_filters=16 --block=dense_
fast --batch_size=64

Multi-GPU
Cifar and MNIST images are still small, below 35x35 pixels. Training on natural 
images requires the preservation of details in the images. So, for example, a good 
input size is 224x224, which is 40 times more. When image classification nets with 
such input size have a few hundred layers, GPU memory limits the batch size to a 
dozen images and so training a batch takes a long time.

To work in multi-GPU mode:

1. The model parameters are in a shared variable, meaning shared between 
CPU / GPU 1 / GPU 2 / GPU 3 / GPU 4, as in single GPU mode.

2. The batch is divided into four splits, and each split is sent to a different GPU 
for the computation. The network output is computed on the split, and the 
gradients retro-propagated to each weight. The GPU returns the gradient 
values for each weight.

3. The gradients for each weight are fetched back from the multiple GPU to the 
CPU and stacked together. The stacked gradients represent the gradient of 
the full initial batch.

4. The update rule applies to the batch gradients and updates the shared  
model weights.
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See the following figure:

Theano stable version supports only one GPU per process, so use the first GPU in 
your main program and launch sub-processes for each GPU to train on. Note that the 
cycle described in the preceding image requires the synchronization of the update 
of the model to avoid each GPU training on unsynchronized models. Instead of 
reprogramming it yourself, a Platoon (https://github.com/mila-udem/platoon) 
framework is dedicated to train your models across multiple GPUs inside one node.

Note, too, that it would also be more accurate to synchronize the batch normalization 
mean and variance across multiple GPUs.

Data augmentation
Data augmentation is a very important technique to improve classification accuracy. 
Data augmentation consists of creating new samples from existing samples, by 
adding some jitters such as:

• Random scale
• Random sized crop
• Horizontal flip

https://github.com/mila-udem/platoon
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• Random rotation
• Lighting noise
• Brightness jittering
• Saturation jittering
• Contrast jittering

This will help the model to be more robust to different lighting conditions that are 
very common in real life.

Instead of always seeing the same dataset, the model discovers different samples at 
each epoch.

Note that input normalization is also important to get better results.

Further reading
You can refer to the following titles for further insights:

• Densely Connected Convolutional Networks, by Gao Huang, Zhuang Liu, 
Kilian Q. Weinberger, and Laurens van der Maaten, Dec 2016

• Code has been inspired by the Lasagne repository:
 ° https://github.com/Lasagne/Recipes/blob/master/papers/

deep_residual_learning/Deep_Residual_Learning_CIFAR-10.
py

 ° https://github.com/Lasagne/Recipes/tree/master/papers/
densenet

• Inception-v4, Inception-ResNet and the Impact of Residual Connections on 
Learning, Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex 
Alemi, 2016

• Deep Residual Learning for Image Recognition, Kaiming He, Xiangyu Zhang, 
and Shaoqing Ren, Jian Sun 2015

• Rethinking the Inception Architecture for Computer Vision, Christian 
Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew 
Wojna, 2015

• Wide Residual Networks, Sergey Zagoruyko, and Nikos Komodakis, 2016
• Identity Mappings in Deep Residual Networks, Kaiming He, Xiangyu Zhang, 

Shaoqing Ren, and Jian Sun, Jul 2016
• Network In Network, Min Lin, Qiang Chen, Shuicheng Yan, 2013
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Summary
New techniques have been presented to achieve state-of-the-art classification results, 
such as batch normalization, global average pooling, residual connections, and  
dense blocks.

These techniques have led to the building residual networks, and densely  
connected networks.

The use of multiple GPUs helps training image classification networks, which have 
numerous convolutional layers, large reception fields, and for which the batched 
inputs of images are heavy in memory usage.

Lastly, we looked at how data augmentation techniques will enable an increase of 
the size of the dataset, reducing the potential of model overfitting, and learning 
weights for more robust networks.

In the next chapter, we'll see how to use the early layers of these networks as features 
to build encoder networks, as well as how to reverse the convolutions to reconstruct 
an output image to perform pixel-wise predictions.
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Translating and Explaining 
with Encoding – decoding 

Networks
Encoding-decoding techniques occur when inputs and outputs belong to the same 
space. For example, image segmentation consists of transforming an input image into 
a new image, the segmentation mask; translation consists of transforming a character 
sequence into a new character sequence; and question-answering consists of replying 
to a sequence of words with a new sequence of words.

To address these challenges, encoding-decoding networks are networks composed 
of two symmetric parts: an encoding network and a decoding network. The encoder 
network encodes the input data into a vector, which will be used by the decoder 
network to produce an output, such as a translation, an answer to the input question, 
an explanation, or an annotation of an input sentence or an input image.

An encoder network is usually composed of the first layers of a network of the 
type of the ones presented in the previous chapters, without the last layers for 
dimensionality reduction and classification. Such a truncated network produces a 
multi-dimensional vector, named features, that gives an internal state representation to 
be used by the decoder to produce the output representation.

This chapter decomposes into the following key concepts:

• Sequence-to-sequence networks
• Application to machine translation
• Application to chatbots
• Deconvolutions
• Application to image segmentation
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• Application to image captioning
• Refinements in decoding techniques

Sequence-to-sequence networks for 
natural language processing
Rule-based systems are being replaced by end-to-end neural networks because of 
their increase in performance.

An end-to-end neural network means the network directly infers all possible rules 
by example, without knowing the underlying rules, such as syntax and conjugation; 
the words (or the characters) are directly fed into the network as input. The same is 
true for the output format, which can be directly the word indexes themselves. The 
architecture of the network takes care of learning the rules with its coefficients.

The architecture of choice for such end-to-end encoding-decoding networks applied 
to Natural Language Processing (NLP), is the sequence-to-sequence network, 
displayed in the following figure:
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Word indexes are converted into their continuous multi-dimensional values in 
the embedded space with a lookup table. This conversion, presented in Chapter 3, 
Encoding Word into Vector is a crucial step to encode the discrete word indexes into  
a high dimensional space that a neural network can process.

Then, a first stack of LSTM is run on the input word embeddings, to encode the 
inputs and produce the thought vector. A second stack of LSTM is initiated with this 
vector as an initial internal state, and is expected to produce the next word for each 
word in the target sentence.

At the core, is our classical step function for the LSTM cell, with input, forget, output, 
and cell gates:

def LSTM( hidden_size):
  W = shared_norm((hidden_size, 4*hidden_size))
  U = shared_norm((hidden_size, 4*hidden_size))
  b = shared_zeros(4*hidden_size)

  params = [W, U, b]

  def forward(m, X, h_, C_ ):
    XW = T.dot(X, W)
    h_U = T.dot(h_, U)
    bfr_actv = XW + h_U + b

    f = T.nnet.sigmoid( bfr_actv[:, 0:hidden_size] )
    i = T.nnet.sigmoid( bfr_actv[:, 1*hidden_size:2*hidden_size] )
    o = T.nnet.sigmoid( bfr_actv[:, 2*hidden_size:3*hidden_size] )
    Cp = T.tanh( bfr_actv[:, 3*hidden_size:4*hidden_size] )

    C = i*Cp + f*C_
    h = o*T.tanh( C )
    C = m[:, None]*C + (1.0 - m)[:, None]*C_
    h = m[:, None]*h + (1.0 - m)[:, None]*h_

    h, C = T.cast(h, theano.config.floatX), T.cast(h, theano.config.
floatX)
    return h, C

  return forward, params

A simple closure is better than a class. There are not enough methods and 
parameters to go for a class. Writing classes impose to add lots of self.  
Before all variables, an __init__ method.
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To reduce computational cost, the full stack of layers is built into a one-step function 
and the recurrency is added to the top of the full stack step function that the output 
of the last layer produces for each timestep. Some other implementations have  
every layer independently recurrent, which is a lot less efficient (more than two  
times slower).

On top of the X input, a mask variable, m, stops the recurrency when set to zero: 
hidden and cell states are kept constant when there is no more data (mask value is 
zero). Since the inputs are processed in batches, sentences in each batch can have 
different lengths and, thanks to the mask, all sentences in a batch can be processed 
in parallel with the same number of steps, corresponding to the maximal sentence 
length. The recurrency stops at a different position for each row in the batch.

The reason for a closure of a class is because the model cannot be applied directly to 
some symbolic input variables as in previous examples: indeed, the model is applied 
to the sequences inside a recurrency loop (with the scan operator). For this reason, in 
many high level deep learning frameworks, each layer is designed as a module that 
exposes a forward/backward method, to be added in various architectures (parallel 
branches and recurrency), as in this example.

The full stack step function of the encoder/decoder to be placed inside their 
respective recurrency loop can be designed as follows:

def stack( voca_size, hidden_size, num_layers, embedding=None, target_
voca_size=0):
    params = []

    if embedding == None:
        embedding = shared_norm( (voca_size, hidden_size) )
        params.append(embedding)

    layers = []
    for i in range(num_layers):
        f, p = LSTM(hidden_size)
        layers.append(f)
        params += p

    def forward( mask, inputs, h_, C_, until_symbol = None):
        if until_symbol == None :
            output = embedding[inputs]
        else:
            output = embedding[T.cast( inputs.argmax(axis=-1), "int32" 
)]

        hos = []
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        Cos = []
      for i in range(num_layers):
            hs, Cs = layers[i](mask, output, h_[i], C_[i])
            hos.append(hs)
            Cos.append(Cs)
            output = hs

        if target_voca_size != 0:
            output_embedding = shared_norm((hidden_size, target_voca_
size))
            params.append(output_embedding)
            output = T.dot(output, output_embedding)

        outputs = (T.cast(output, theano.config.floatX),T.cast(hos, 
theano.config.floatX),T.cast(Cos, theano.config.floatX))

        if until_symbol != None:
            return outputs, theano.scan_module.until( T.eq(output.
argmax(axis=-1)[0], until_symbol) )

        return outputs

    return forward, params

The first part is the conversion of the input to the embedding space. The second part 
is the stack of LSTM layers. For the decoder (when target_voca_size != 0), a 
linear layer is added to compute the output.

Now that we have our encoder/decoder step function, let's build the full  
encoder-decoder network.

First, the encoder-decoder network has to encode the input into the internal  
state representation:

encoderInputs, encoderMask = T.imatrices(2)
h0,C0 = T.tensor3s(2)

encoder, encoder_params = stack(valid_data.source_size, opt.hidden_
size, opt.num_layers)

([encoder_outputs, hS, CS], encoder_updates) = theano.scan(
  fn = encoder,
  sequences = [encoderMask, encoderInputs],
  outputs_info = [None, h0, C0])



Translating and Explaining with Encoding – decoding Networks

[ 172 ]

To encode the input, the encoding stack step function is run recurrently on  
each word.

When outputs_info is composed of three variables, the scan operator considers that 
the output of the scan operation is composed of three values.

These outputs come from the encoding stack step function and correspond to:

• The output of the stack
• The hidden states of the stack, and
• The cell states for the stack, for each step/word of the input sentence

In outputs_info, None indicates to consider that the encoder will produce three 
outputs, but only the last two will be fed back into the step function (h0 -> h_ and 
C0 -> C_).

Given that sequences point to two sequences, the step function for the scan operation 
has to handle four arguments.

Then, once the input sentence has been encoded into a vector, the encoder-decoder 
network decodes it:

decoderInputs, decoderMask, decoderTarget = T.imatrices(3)

decoder, decoder_params = stack(valid_data.target_size, opt.hidden_
size, opt.num_layers, target_voca_size=valid_data.target_size)

([decoder_outputs, h_vals, C_vals], decoder_updates) = theano.scan(
  fn = decoder,
  sequences = [decoderMask, decoderInputs],
  outputs_info = [None, hS[-1], CS[-1]])

params = encoder_params + decoder_params

The last states hS[-1], CS[-1]] of the encoder network are fed as initial hidden and 
cell states of the decoder network.

Computing the log likelihood on top of the output is the same as in the previous 
chapter on sequences.

For evaluation, the last predicted word has to be fed into the input of the decoder to 
predict the next word, which is a bit different from training, where input and output 
sequences are known:
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In this case, None in outputs_info can be replaced with an initial value, 
prediction_start, the start token. Since it is not None anymore, this initial value 
will be fed into the step function of the decoder, as long as it is with h0 and C0. The 
scan operator considers that there are three previous values to feed into the decoder 
function (and not two as before) at each step. Since the decoderInputs is removed 
from the input sequences, the number of arguments to the decoder stack step 
function remains four: the previous predicted output value is used in place of the  
fed input value. That way, the same decoder function can be used for both training 
and prediction:

prediction_mask = theano.shared(np.ones(( opt.max_sent_size, 1), 
dtype="int32"))

prediction_start = np.zeros(( 1, valid_data.target_size), 
dtype=theano.config.floatX)
prediction_start[0, valid_data.idx_start] = 1
prediction_start = theano.shared(prediction_start)

([decoder_outputs, h_vals, C_vals], decoder_updates) = theano.scan(
  fn = decoder,
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  sequences = [prediction_mask],
  outputs_info = [prediction_start, hS[-1], CS[-1]],
  non_sequences = valid_data.idx_stop
  )

The non-sequence parameter, valid_data.idx_stop, indicates to the decoder step 
function that it is in prediction mode, meaning the input is not a word index, but its 
previous output (requires finding the max index).

Also in prediction mode, one sentence at a time is predicted (batch size is 1). The 
loop is stopped when the end token is produced, thanks to the theano.scan_
module.until output in the decoder stack step function, and does not need to 
decode further words.

Seq2seq for translation
Sequence-to-sequence (Seq2seq) networks have their first application in  
language translation.

A translation task has been designed for the conferences of the Association for 
Computational Linguistics (ACL), with a dataset, WMT16, composed of translations 
of news in different languages. The purpose of this dataset is to evaluate new 
translation systems or techniques. We'll use the German-English dataset.

1. First, preprocess the data:
python 0-preprocess_translations.py --srcfile data/src-train.txt 
--targetfile data/targ-train.txt --srcvalfile data/src-val.txt 
--targetvalfile data/targ-val.txt --outputfile data/demo

First pass through data to get vocab...

Number of sentences in training: 10000

Number of sentences in valid: 2819

Source vocab size: Original = 24995, Pruned = 24999

Target vocab size: Original = 35816, Pruned = 35820

(2819, 2819)

Saved 2819 sentences (dropped 181 due to length/unk filter)

(10000, 10000)

Saved 10000 sentences (dropped 0 due to length/unk filter)

Max sent length (before dropping): 127
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2. Train the Seq2seq network:
python 1-train.py  --dataset translation

At first glance, you notice the GPU time for one epoch is 445.906425953, 
hence ten times faster than on the CPU (4297.15962195).

3. Once trained, translate your sentences in English to German, loading the 
trained model :

python 1-train.py  --dataset translation --model model_translation_
e100_n2_h500

Seq2seq for chatbots
A second target application of sequence-to-sequence networks is question-
answering, or chatbots.

For that purpose, download the Cornell Movie--Dialogs Corpus and preprocess it:

wget http://www.mpi-sws.org/~cristian/data/cornell_movie_dialogs_corpus.
zip -P /sharedfiles/

unzip /sharedfiles/cornell_movie_dialogs_corpus.zip  -d /sharedfiles/
cornell_movie_dialogs_corpus

python 0-preprocess_movies.py

This corpus contains a large metadata-rich collection of fictional conversations 
extracted from raw movie scripts.

Since source and target sentences are in the same language, they use the same 
vocabulary, and the decoding network can use the same word embedding as the 
encoding network:

if opt.dataset == "chatbot":
    embeddings = encoder_params[0]

The same commands are true for chatbot dataset:

python 1-train.py  --dataset chatbot # training
python 1-train.py  --dataset chatbot --model model_chatbot_e100_n2_h500 # 
answer my question
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Improving efficiency of  
sequence-to-sequence network
A first interesting point to notice in the chatbot example is the reverse ordered input 
sequence: such a technique has been shown to improve results.

For translation, it is very common then to use a bidirectional LSTM to compute the 
internal state as seen in Chapter 5, Analyzing Sentiment with a Bidirectional LSTM:  
two LSTMs, one running in the forward order, the other in the reverse order,  
run in parallel on the sequence, and their outputs are concatenated:

Such a mechanism captures better information given future and past.

Another technique is the attention mechanism that will be the focus of the  
next chapter.

Lastly, refinement techniques have been developed and tested with two-dimensional 
Grid LSTM, which are not very far from stacked LSTM (the only difference is a 
gating mechanism in the depth/stack direction):
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 Grid long short-term memory

The principle of refinement is to run the stack in both orders on the input sentence as 
well, sequentially. The idea behind this formulation is to have the encoder network 
revisit or re-encode the sentence, after having encoded it in the forward direction, 
and implicitly capture some time patterns. Also, note that the 2D-grid gives more 
possible interactions for this re-encoding, re-encoding the vector at each prediction 
step, using previously outputted words as an orientation for the next predicted 
word. All this improvement is linked to a bigger computational capacity, in O(n 
m) for this re-encoder network (n and m represent the length of input and target 
sentences), while being of O(n+m) for the encoder-decoder network.

All these techniques decrease perplexity. When the model is trained, consider 
also using the beam search algorithm that will keep track of the top-N possible 
predictions with their probabilities, instead of one, at each time step, to avoid the 
possibility that one bad prediction ranking at first position could lead to further 
erroneous predictions.



Translating and Explaining with Encoding – decoding Networks

[ 178 ]

Deconvolutions for images
In the case of images, researchers have been looking for decoding operations acting 
as the inverse of the encoding convolutions.

The first application was the analysis and understanding of convolutional networks, 
as seen in Chapter 2, Classifying Handwritten Digits with a Feedforward Network, 
composed of convolutional layers, max-pooling layers and rectified linear units. To 
better understand the network, the idea is to visualize the parts of an image that are 
most discriminative for a given unit of a network: one single neuron in a high level 
feature map is left non-zero and, from that activation, the signal is retro-propagated 
back to the 2D input.

To reconstruct the signal through the max pooling layers, the idea is to keep track of 
the position of the maxima within each pooling region during the forward pass. Such 
architecture, named DeConvNet can be shown as:

Visualizing and understanding convolutional networks
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The signal is retro-propagated to the position that had the maximal value during the 
forward pass.

To reconstruct the signal through the ReLU layers, three methods have  
been proposed:

• Back-propagation retro-propagates only to the positions that have  
been positive

• Backward DeconvNet retro-propagates only the positive gradients
• Guided back-propagation retro-propagates only to a position that  

satisfies both previous conditions, positive input during forward  
pass and positive gradient

The methods are illustrated in the following figure:
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The retro-propagation from the first layers gives various sorts of filter:

However, from higher layers in the network, the guided back-propagation gives 
much better results:

It is also possible to condition the back-propagation on an input image, that will 
activate more than one neuron, from which the retro-propagation will be applied,  
to get a more precise input visualization:



Chapter 8

[ 181 ]

The back-propagation can also be applied to the original input image rather than a 
blank one, a process that has been named Inceptionism by Google research, when 
retro-propagation is used to augment the output probability:

But the main purpose of deconvolution is for scene segmentation or image semantic 
analysis, where the deconvolution is replaced by a learned upsampling convolution, 
such as in the SegNet network:

 SegNet: A deep convolutional encoder-decoder architecture for image segmentation
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At every step in the deconvolution process, lower input features are usually 
concatenated to the current features for upsampling.

The DeepMask network takes a mixed approach, deconvolutioning only the patches 
containing the objects. For that purpose, it is trained on input patches of 224x224 
containing the objects (+/- 16 pixels in translation) instead of the full image:

Learning to segment object candidates

The convolutions of the encoder (VGG-16) network have a downsampling of factor 
16, leading to a feature map of 14x14.

A joint learning trains two branches, one for segmentation, one for scoring if the 
object is present, centered, and at the right scale in the patch.

The branch of interest is the semantic branch that upsamples to a 56x56  
segmentation map of the object in the patch from the 14x14 feature map.  
To upsample, is possible if:

• A fully connected layer, meaning that each position in the upsampled map 
depends on all features and has the global picture to predict the value

• A convolution (or locally connected layer), reducing the number of 
parameters, but also predicting each position score with a partial view

• A mixed approach, consisting of two linear layers with no non-linearity 
between them, in a way to perform a dimensionality reduction, as presented 
in the preceding figure

The output mask is then upsampled back to the original patch dimensions 224x224 
by a simple bilinear upsampling layer.

To deal with the full input image, fully connected layers can be transformed into 
convolutions with a kernel size equal to the fully connected layer input size and the 
same coefficients, so that the network becomes fully convolutional, with stride 16, 
when applied to the full image.
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As sequence-to-sequence networks have been refined with a bidirectional  
reencoding mechanism, the SharpMask approach improves the sharpness  
of the upsampling deconvolutional process using the input convolutional  
features at the equivalent scale:

Learning to refine object segments

While the SegNet approach only learns to deconvolve from an up-sampled map 
produced by keeping track of the max pooling indices, the SharpMask approach 
directly reuses the input feature maps, a very usual technique for coarse-to-
finegrained approaches.

Lastly, bear in mind that it is possible to improve the results one step further with  
the application of a Conditional Random Fields (CRF) post-processing step,  
either for one-dimensional inputs such as texts, or two-dimensional inputs  
such as segmentation images.

Multimodal deep learning
To open the possible applications further, the encoding-decoding framework can be 
applied with different modalities, such as, for example, for image captioning.

Image captioning consists of describing the content of the image with words.  
The input is an image, naturally encoded into a thought vector with a deep 
convolutional network.

https://arxiv.org/abs/1603.08695
https://arxiv.org/abs/1603.08695
https://arxiv.org/abs/1603.08695
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The text to describe the content of the image can be produced from this internal state 
vector with the same stack of LSTM networks as a decoder, as in Seq2seq networks:

 

Further reading
Please refer to the following topics for better insights:

• Sequence to Sequence Learning with Neural Networks, Ilya Sutskever, Oriol 
Vinyals, Quoc V. Le, Dec 2014

• Learning Phrase Representations using RNN Encoder–Decoder for Statistical 
Machine Translation, Kyunghyun Cho, Bart van Merrienboer, Caglar 
Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua 
Bengio, Sept 2014

• Neural Machine Translation by Jointly Learning to Align and Translate, Dzmitry 
Bahdanau, Kyunghyun Cho, Yoshua Bengio, May 2016

• A Neural Conversational Model, Oriol Vinyals, Quoc Le, July 2015
• Fast and Robust Neural Network Joint Models for Statistical Machine Translation, 

Jacob Devlin, Rabih Zbib, Zhongqiang Huang,Thomas Lamar, Richard 
Schwartz, John Mkahoul, 2014

• SYSTRAN's Pure Neural Machine Translation Systems, Josep Crego, Jungi Kim, 
Guillaume Klein, Anabel Rebollo, Kathy Yang, Jean Senellart, Egor Akhanov, 
Patrice Brunelle, Aurelien Coquard, Yongchao Deng, Satoshi Enoue, Chiyo 
Geiss, Joshua Johanson, Ardas Khalsa, Raoum Khiari, Byeongil Ko, Catherine 
Kobus, Jean Lorieux, Leidiana Martins, Dang-Chuan Nguyen, Alexandra 
Priori, Thomas Riccardi, Natalia Segal, Christophe Servan, Cyril Tiquet,  
Bo Wang, Jin Yang, Dakun Zhang, Jing Zhou, Peter Zoldan, 2016

• Blue: a method for automatic evaluatoin of machine translation, Kishore Papineni, 
Salim Roukos, Todd Ward, and Wei-Jing Zhu, 2002

• ACL 2016 translation task
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• Chameleons in imagined conversations: A new approach to understanding 
coordination of linguistic style in dialogs, Cristian Danescu-NiculescuMizil 
and Lillian Lee2011 at: https://research.googleblog.com/2015/06/
inceptionism-going-deeper-into-neural.html

• Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected 
CRFs, Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin 
Murphy, Alan L., Yuille 2014

• SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image 
Segmentation, Vijay Badrinarayanan, Alex Kendall, Roberto Cipolla, Oct 2016

• R-FCN: Object Detection via Region-based Fully Convolutional Networks, Jifeng 
Dai, Yi Li, Kaiming He, Jian Sun2016

• Learning to segment object candidates, Pedro O. Pinheiro, Ronan Collobert,  
Piotr Dollar, June 2015

• Learning to refine object segments, Pedro O. Pinheiro, Tsung-Yi Lin, Ronan 
Collobert, Piotr Dollàr, Mar 2016

• Visualizing and Understanding Convolutional Networks, Matthew D Zeiler,  
Rob Fergus, Nov 2013

• Show and tell: A Neural Image Caption Generator, Oriol Vinyals, Alexander 
Toshev, Samy Bengio, Dumitru Erhan, 2014

Summary
As for love, head-to-toe positions provide exciting new possibilities: encoder and 
decoder networks use the same stack of layers but in their opposite directions.

Although it does not provide new modules to deep learning, such a technique of 
encoding-decoding is quite important because it enables the training of the networks 
'end-to-end', that is, directly feeding the inputs and corresponding outputs, without 
specifying any rules or patterns to the networks and without decomposing encoding 
training and decoding training into two separate steps.

While image classification was a one-to-one task, and sentiment analysis a  
many-to-one task, encoding-decoding techniques illustrate many-to-many  
tasks, such as translation or image segmentation.

In the next chapter, we'll introduce an attention mechanism that provides the ability 
for encoder-decoder architecture to focus on some parts of the input in order to 
produce a more accurate output.
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Selecting Relevant Inputs 
or Memories with the 

Mechanism of Attention
This chapter introduces a mechanism of attention to neural network performance, 
and enables networks to improve their performance by focusing on relevant parts of 
their inputs or memories.

With such a mechanism, translations, annotations, explanations, and segmentations, 
as seen in previous chapter, enjoy greater accuracy.

Inputs and outputs of a neural network may also be connected to reads and writes 
to an external memory. These networks, memory networks, are enhanced with an 
external memory and capable of deciding what information, and from where, to 
store or retrieve.

In this chapter, we'll discuss:

• The mechanism of attention
• Aligning translations
• Focus in images
• Neural Turing Machines
• Memory networks
• Dynamic memory networks
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Differentiable mechanism of attention
When translating a sentence, describing the content of an image, annotating a 
sentence, or transcribing an audio, it sounds natural to focus on one part at a time 
of the input sentence or image, to get the sense of the block and transform it, before 
moving to the next part, under a certain order for global understanding.

For example, in the German language, under certain conditions, verbs come at the 
end of the sentence, so, when translating to English, once the subject has been read 
and translated, a good machine translation neural network could move its focus to 
the end of the sentence to find the verb and translate it into English. This process 
of matching input positions to current output predictions is possible through the 
mechanism of attention.

First, let's come back to classification networks that have been designed with a 
softmax layer (see Chapter 2, Classifying Handwritten Digits with a Feedforward Network) 
that outputs a non-negative weight vector vr  that sums to 1 given an input X:

( ) 0iw X ≥

Then:

( ) 1i
i
w X =∑

The objective of classification is to have ( )iw X  as close as possible to 1 for the 
correct class k, and near zero for the other classes.

But ( )iw X  is a probability distribution, and can also be used as a weight vector to 
pay attention to some values of a memory vector ( )m Xr

 at a position k:

( ) ( )attentionoutput i i
i
w X m X=∑

It returns km  if the weights focus on position k. Depending on the sharpness of the 
weights, the output will be more or less blurry.
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This mechanism of addressing the value of the vector m at a particular position is an 
attention mechanism: that is, it's linear, differentiable, and has a back-propagation 
gradient descent for training on specific tasks.

Better translations with attention mechanism
The applications for attention mechanisms are very large. To get a better 
understanding, let us first illustrate it with the example of machine translation. 
Attention mechanism aligns the source sentence and the target sentence (predicted 
translation), and avoids translation degradation for long sentences:

In the previous chapter, we addressed the machine translation with an  
encoder-decoder framework and a fixed-length encoded vector c provided  
by the encoder to the decoder. With the attention mechanism, if each step of  
the encoding recurrent network produces a hidden state hi, the vector provided  
to the decoder at each decoding time step t will be variable and given by:

,

T

t t i i
i

c hα=∑

With ,t iα  the alignment coefficients produced by a softmax function:

( ) ( )( ), 1
T

t i s t h iW s W hα −= ⋅ ⋅softmax
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Depending on the previous hidden state of the decoder  and the encoding hidden 
states , the embedded dot product between the previous decoder hidden state and 
each encoder hidden state produces a weight that describes how they should match:

After a few epochs of training, the model predicts each next word by focusing on a 
part of the input:

To learn to align better, it is possible to use the alignment annotations present in 
the dataset, and add a cross entropy loss for the weights produced by the attention 
mechanism, to be used in the first epochs of training.
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Better annotate images with attention 
mechanism
The same mechanism of attention can be applied to the tasks of annotating images or 
transcribing audio.

For images, the attention mechanism focuses on the relevant part of the features at 
each predicting time step:

Show, attend and tell: neural image caption generation with visual attention

Let's have a look at the point of attention on images for a trained model:

(Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, by Kelvin Xu et al., 2015)
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Store and retrieve information in Neural 
Turing Machines
Attention mechanism can be used as an access to a part of memory in the  
memory-augmented networks.

The concept of memory in Neural Turing Machines has been inspired by both 
neuroscience and computer hardware.

RNN hidden states to store information is not capable of storing sufficiently large 
amounts of data and retrieving it, even when the RNN is augmented with a memory 
cell, such as in the case of LSTM.

To solve this problem, Neural Turing Machines (NTM) have been first designed 
with an external memory bank and read/write heads, whilst retaining the magic of 
being trained via gradient descent.

Reading the memory bank is given by an attention on the variable memory bank as 
the attention on inputs in the previous examples:

r
i i

i
r w M=∑

Which can be illustrated the following way:
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While writing a value to the memory bank consists of assigning our new value to 
part of the memory, thanks to another attention mechanism:

( ) ( ) ( )( ) ( )1 1 w w
t t t t t tM i M i w i e w i a−= − +

ta  describes the information to store, and te  the information to erase, and are each 
the size of the memory bank:

The read and write heads are designed as in a hard drive and their mobility is 
imagined by the attention weights r

tw  and w
tw .

The memory tM  will evolve at every timestep as the cell memory of a LSTM; but, 
since the memory bank is designed to be large, the network tends to store and 
organize the incoming data at every timestep with less interference than for any 
classical RNN.
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The process to work with the memory is naturally been driven with a recurrent 
neural network acting as a controller at each time step:

The controller network outputs at each timestep:

• The positioning or attention coefficients for each write/read head
• The value to store or erase for the write heads

The original NTM proposes two approaches to define the head positioning, also 
named addressing, defined by the weights tw :

• A content-based positioning, to place similar content in the same area of the 
memory, which is useful for retrieval, sorting or counting tasks:

( ) ( )( )( )similarity ,t t t tw i x M iβ= softmax

• A location-based positioning, which is based on previous position of the 
head, and can be used in copy tasks. A gate tg  defines the influence of the 
previous weights versus newly generated weights to compute the position of 
the head. A shift weight ts  defines how much to translate from the position 
with respect to this position.

Last, a sharpening weight tγ  reduces the blur on the head position:
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All operations are differentiable.

Many more than two heads are possible, in particular for tasks such as the addition 
of two stored values where a single read head would be limiting.

These NTM have demonstrated better capability than LSTM in tasks such as 
retrieving the next item in an input sequence, repeating the input sequence many 
times, or sampling from distribution.

Memory networks
Answering questions or resolving problems given a few facts or a story have led  
to the design of a new type of networks, memory networks. In this case, the facts  
or the story are embedded into a memory bank, as if they were inputs. To solve  
tasks that require the facts to be ordered or to create transitions between the facts, 
memory networks use a recurrent reasoning process in multiple steps or hops on  
the memory banks.

First, the query or question q is converted into a constant input embedding:

While, at each step of the reasoning, the facts X to answer the question are  
embedded into two memory banks, where the embedding coefficients are a  
function of the timestep:

1t tM A X= ⋅

To compute attention weights:

( )( )11t t t tp M B u −= ⋅ ⋅softmax

And:

2t tM C X= ⋅
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Selected with the attention:

2t t to p M= ⋅

The output at each reasoning time step is then combined with the identity 
connection, as seen previously to improve the efficiency of the recurrency:

1t t tu o u −= +

A linear layer and classification softmax layer are added to the last ku :
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Episodic memory with dynamic memory 
networks
Another design has been introduced with dynamic memory networks. First, the N 
facts are concatenated with a separator token and then encoded with a RNN: the 
output of the RNN at each separation iC  is used as input embedding. This way to 
encode facts is more natural and also preserves time dependency. The question is 
also encoded with an RNN to produce a vector q.

Secondly, the memory bank is replaced with an episodic memory, relying on an 
attention mechanism mixed with an RNN, in order to preserve time dependency 
between the facts as well:

( ) ( )1 1, 1t t t t t
i i i i i ih g GRU c h g h− −= + −

The gates t
ig  are given by a multilayer perceptron depending on the previous state of 

reasoning 1t−u , the question and the input embedding iC  as inputs.

The reasoning occurs the same way with a RNN:

( )1,tt N tu GRU h u −=

The following picture illustrates the interactions between inputs and outputs to 
compute the episodic memories:

Ask Me Anything: dynamic memory networks for natural language processing
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To benchmark these networks, Facebook research has synthetized the bAbI dataset, 
using NLP tools to create facts, questions, and answers for some random modeled 
stories. The dataset is composed of different tasks to test different reasoning skills, 
such as reasoning on one, two, or three facts, in time, size, or position, counting, 
listing, or understanding relations between arguments, negations, motivations,  
and finding paths.

As for guided alignment in machine translation, when the dataset also contains the 
annotations for the facts leading to the answer, it is also possible to use supervised 
training for:

• The attention mechanism
• When to stop the reasoning loop, producing a stop token, when the number 

of facts used is sufficient to answer the question

Further reading
You can refer to these topics for more insights:

• Ask Me Anything: Dynamic Memory Networks for Natural Language Processing, 
Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, 
Ishaan Gulrajani, Victor Zhong, Romain Paulus, Richard Socher, 2015

• Attention and Augmented Recurrent Neural Networks, Chris Olah, Shan Carter, 
Sept 2016 http://distill.pub/2016/augmented-rnns/

• Guided Alignment training for Topic Aware Neural Machine Translation, Wenhu 
Chen, Evgeny Matusov, Shahram Khadivi, Jan-Thorsten Peter, Jul 2016

• Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, 
Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan 
Salakhutdinov, Richard Zemel, Yoshua Bengio, Fev 2015

• Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks, 
Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M. Rush, Bart van 
Merriënboer, Armand Joulin, Tomas Mikolov,2015

• Memory Networks, Jason Weston, Sumit Chopra, Antoine Bordes,2014
• End-To-End Memory Networks, Sainbayar Sukhbaatar, Arthur Szlam, Jason 

Weston, Rob Fergus, 2015
• Neural Turing Machines, Alex Graves, Greg Wayne, Ivo Danihelka, 2014
• Deep Visual-Semantic Alignments for Generating Image Descriptions, Andrej 

Karpathy, Li Fei-Fei, 2014
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Summary
The attention mechanism is a smart option to help neural networks select the right 
information and focus to produce the correct output. It can be placed either directly 
on the inputs or the features (inputs processed by a few layers). Accuracies in the 
cases of translation, image annotation, and speech recognition, are increased, in 
particular when the dimension of the inputs is important.

Attention mechanism has led to new types of networks enhanced with external 
memory, working as an input/output, from which to read or to which to write. 
These networks have proved to be very powerful in question-answering challenges, 
into which most tasks in natural language processing can can be cast: tagging, 
classification, sequence-to-sequence, or question answering tasks.

In the next chapter, we'll see more advanced techniques and their application to the 
more general case of recurrent neural networks, to improve accuracy.
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Predicting Times Sequences 
with Advanced RNN

This chapter covers advanced techniques for recurrent neural networks.

The techniques seen in Chapter 2, Classifying Handwritten Digits with a Feedforward 
Network, for feedforward networks, such as going deeper with more layers, or 
adding a dropout layer, have been more challenging for recurrent networks and 
require some new design principles.

Since adding new layers increases the vanishing/exploding gradient issue, a new 
technique based on identity connections as for Chapter 7, Classifying Images with 
Residual Networks has proved to provide state-of-the-art results.

The topics covered are:

• Variational RNN
• Stacked RNN
• Deep Transition RNN
• Highway connections and their application to RNN

Dropout for RNN
The application of dropout inside neural networks has long been a subject of 
research, since the naïve application of dropout to the recurrent connection 
introduced lots more instability and difficulties to training the RNN.
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A solution has been discovered, derived from the variational Bayes Network theory. 
The resulting idea is very simple and consists of preserving the same dropout mask 
for the whole sequence on which the RNN is training, as shown in the following 
picture, and generating a new dropout mask at each new sequence:

Such a technique is called variational RNN. For the connections that have the  
same arrows in the preceding figure, we'll keep the noise mask constant for  
the all sequence.

For that purpose, we'll introduce the symbolic variables _is_training  
and _noise_x to add a random (variational) noise (dropout) to input, output,  
and recurrent connection during training:

_is_training = T.iscalar('is_training')
_noise_x = T.matrix('noise_x')
inputs = apply_dropout(_is_training, inputs, T.shape_padright(_
noise_x.T))

Deep approaches for RNN
The core principle of deep learning to improve the representative power of  
a network is to add more layers. For RNN, two approaches to increase the  
number of layers are possible:

• The first one is known as stacking or stacked recurrent network, where  
the output of the hidden layer of a first recurrent net is used as input to a 
second recurrent net, and so on, with as many recurrent networks on top  
of each other:
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For a depth d and T time steps, the maximum number of connections between input 
and output is d + T – 1:

• The second approach is the deep transition network, consisting of adding 
more layers to the recurrent connection:

Figure 2

In this case, the maximum number of connections between input and output is d x T, 
which has been proved to be a lot more powerful.
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Both approaches provide better results.

However, in the second approach, as the number of layers increases by a factor,  
the training becomes much more complicated and unstable since the signal fades 
or explodes a lot faster. We'll address this problem later by tackling the principle of 
recurrent highway connections.

First, as usual, sequences of words, represented as an array of index values in the 
vocabulary, and of dimension (batch_size, num_steps), are embedded into an 
input tensor of dimension (num_steps, batch_size, hidden_size):

embedding = shared_uniform(( config.vocab_size,config.hidden_size), 
config.init_scale)
params = [embedding]
inputs = embedding[_input_data.T]

The symbolic input variable _lr enables the decrease of the learning rate  
during training:

_lr = theano.shared(cast_floatX(config.learning_rate), 'lr')

Let's begin with the first approach, the stacked recurrent networks.

Stacked recurrent networks
To stack recurrent networks, we connect the hidden layer of the following recurrent 
network, to the input of the preceding recurrent network:

When the number of layers is one, our implementation is a recurrent network as in 
the previous chapter.
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First we implement dropout in our simple RNN model:

def model(inputs, _is_training, params, batch_size, hidden_size, 
drop_i, drop_s, init_scale, init_H_bias):
    noise_i_for_H = get_dropout_noise((batch_size, hidden_size), 
drop_i)
    i_for_H = apply_dropout(_is_training, inputs, noise_i_for_H)
    i_for_H = linear.model(i_for_H, params, hidden_size, 
                   hidden_size, init_scale, bias_init=init_H_bias)

    # Dropout noise for recurrent hidden state.
    noise_s = get_dropout_noise((batch_size, hidden_size), drop_s)

    def step(i_for_H_t, y_tm1, noise_s):
        s_lm1_for_H = apply_dropout(_is_training,y_tm1, noise_s)
        return T.tanh(i_for_H_t + linear.model(s_lm1_for_H, 
                  params, hidden_size, hidden_size, init_scale))

    y_0 = shared_zeros((batch_size, hidden_size), name='h0')
    y, _ = theano.scan(step, sequences=i_for_H, outputs_info=[y_0], 
non_sequences = [noise_s])

    y_last = y[-1]
    sticky_state_updates = [(y_0, y_last)]

    return y, y_0, sticky_state_updates

We do the same in our LSTM model:

def model(inputs, _is_training, params, batch_size, hidden_size, 
drop_i, drop_s, init_scale, init_H_bias, tied_noise):
    noise_i_for_i = get_dropout_noise((batch_size, hidden_size), 
drop_i)
    noise_i_for_f = get_dropout_noise((batch_size, hidden_size), 
drop_i) if not tied_noise else noise_i_for_i
    noise_i_for_c = get_dropout_noise((batch_size, hidden_size), 
drop_i) if not tied_noise else noise_i_for_i
    noise_i_for_o = get_dropout_noise((batch_size, hidden_size), 
drop_i) if not tied_noise else noise_i_for_i

    i_for_i = apply_dropout(_is_training, inputs, noise_i_for_i)
    i_for_f = apply_dropout(_is_training, inputs, noise_i_for_f)
    i_for_c = apply_dropout(_is_training, inputs, noise_i_for_c)
    i_for_o = apply_dropout(_is_training, inputs, noise_i_for_o)

    i_for_i = linear.model(i_for_i, params, hidden_size, hidden_size, 
init_scale, bias_init=init_H_bias)
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    i_for_f = linear.model(i_for_f, params, hidden_size, hidden_size, 
init_scale, bias_init=init_H_bias)
    i_for_c = linear.model(i_for_c, params, hidden_size, hidden_size, 
init_scale, bias_init=init_H_bias)
    i_for_o = linear.model(i_for_o, params, hidden_size, hidden_size, 
init_scale, bias_init=init_H_bias)

    # Dropout noise for recurrent hidden state.
    noise_s = get_dropout_noise((batch_size, hidden_size), drop_s)
    if not tied_noise:
      noise_s = T.stack(noise_s, get_dropout_noise((batch_size, 
hidden_size), drop_s),
 get_dropout_noise((batch_size, hidden_size), drop_s), get_dropout_
noise((batch_size, hidden_size), drop_s))

    def step(i_for_i_t,i_for_f_t,i_for_c_t,i_for_o_t, y_tm1, c_tm1, 
noise_s):
        noise_s_for_i = noise_s if tied_noise else noise_s[0]
        noise_s_for_f = noise_s if tied_noise else noise_s[1]
        noise_s_for_c = noise_s if tied_noise else noise_s[2]
        noise_s_for_o = noise_s if tied_noise else noise_s[3]

        s_lm1_for_i = apply_dropout(_is_training,y_tm1, noise_s_for_i)
        s_lm1_for_f = apply_dropout(_is_training,y_tm1, noise_s_for_f)
        s_lm1_for_c = apply_dropout(_is_training,y_tm1, noise_s_for_c)
        s_lm1_for_o = apply_dropout(_is_training,y_tm1, noise_s_for_o)

        i_t = T.nnet.sigmoid(i_for_i_t + linear.model(s_lm1_for_i, 
params, hidden_size, hidden_size, init_scale))
        f_t = T.nnet.sigmoid(i_for_o_t + linear.model(s_lm1_for_f, 
params, hidden_size, hidden_size, init_scale))
        c_t = f_t * c_tm1 + i_t * T.tanh(i_for_c_t + linear.model(s_
lm1_for_c, params, hidden_size, hidden_size, init_scale))
        o_t = T.nnet.sigmoid(i_for_o_t + linear.model(s_lm1_for_o, 
params, hidden_size, hidden_size, init_scale))
        return o_t * T.tanh(c_t), c_t

    y_0 = shared_zeros((batch_size,hidden_size), name='h0')
    c_0 = shared_zeros((batch_size,hidden_size), name='c0')
    [y, c], _ = theano.scan(step, sequences=[i_for_i,i_for_f,i_
for_c,i_for_o], outputs_info=[y_0,c_0], non_sequences = [noise_s])

    y_last = y[-1]
    sticky_state_updates = [(y_0, y_last)]

    return y, y_0, sticky_state_updates
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Running our stacked networks:

python train_stacked.py --model=rnn
python train_stacked.py --model=lstm

We get 15,203,150 parameters for the RNN, with 326 words per seconds (WPS) on a 
CPU and 4,806 WPS on a GPU.

For LSTM, the number of parameters is 35,882,600 with a speed of 1,445 WPS  
on a GPU.

The stacked RNN do not converge, as we might have imagined: the  
vanishing/exploding gradient issue is increased with depth.

LSTM, designed to reduce such as an issue, do converge a lot better when stacked, 
than as a single layer.

Deep transition recurrent network
Contrary to stacked recurrent network, a deep transition recurrent network consists 
of increasing the depth of the network along the time direction, by adding more 
layers or micro-timesteps inside the recurrent connection.

To illustrate this, let us come back to the definition of a transition/recurrent 
connection in a recurrent network: it takes as input the previous state 1ty −  and the 
input data tx  at time step t, to predict its new state ty .

In a deep transition recurrent network (figure 2), the recurrent transition is 
developed with more than one layer, up to a recurrency depth L: the initial  
state is set to the output of the last transition:

1
0
t ts y −=

Furthermore, inside the transition, multiple states or steps are computed:

( ) ( )1 1 1, tanh 1t t t H t H t H
l l l l l l l ls H x s W x R s b− = −= = + +

The final state is the output of the transition:

t
Ly s=
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Highway networks design principle
Adding more layers in the transition connections increases the vanishing or 
exploding gradient issue during backpropagation in long term dependency.

In the Chapter 4, Generating Text with a Recurrent Neural Net, LSTM and GRU 
networks have been introduced as solutions to address this issue. Second order 
optimization techniques also help overcome this problem.

A more general principle, based on identity connections, to improve the training 
in deep networks Chapter 7, Classifying Images with Residual Networks, can also be 
applied to deep transition networks.

Here is the principle in theory:

Given an input x to a hidden layer H with weigh HW :

( ),Hy H W x=

A highway networks design consists of adding the original input information (with 
an identity layer) to the output of a layer or a group of layers, as a shortcut:

y = x

Two mixing gates, the transform gate ( ),TT W x  and the carry gate, ( ),CC W x  learn to 
modulate the influence of the transformation in the hidden layer, and the amount of 
original information to allow to pass through:

( ) ( ) ( ), , ,H T cy H W x T W x x C W x= ⋅ + ⋅

Usually, to reduce the total number of parameters in order to get faster-to-train 
networks, the carry gate is taken as the complementary to 1 for the transform gate:

( ) ( ), 1 ,c TC W x T W x= −

Recurrent Highway Networks
So, let's apply the highway network design to deep transition recurrent networks, 
which leads to the definition of Recurrent Highway Networks (RHN), and predict 
the output ty  given 1ty −  the input of the transition:

1
0
t ts y −=



Chapter 10

[ 209 ]

The transition is built with multiple steps of highway connections:

( ) ( ) ( )1 1 1 1, , ,t t t t t t t t
l l l l l l l ls H x s T x s s C x s− − − −= ⋅ + ⋅

t
Ly s=

Here the transform gate is as follows:

( ) ( )1 1 1, 1t t T t T t T
l l l l l l lT x s W x R s bσ− = −= + +

And, to reduce the number of weights, the carry gate is taken as the complementary 
to the transform gate:

( ) ( ), 1 ,c TC W x T W x= −

For faster computation on a GPU, it is better to compute the linear transformation on 
inputs over different time steps H t

lW x  and T t
lW x  in a single big matrix multiplication, 

all-steps input matrices  and  at once, since the GPU will 
use a better parallelization, and provide these inputs to the recurrency:

y_0 = shared_zeros((batch_size, hidden_size))
y, _ = theano.scan(deep_step_fn, sequences = [i_for_H, i_for_T],
            outputs_info = [y_0], non_sequences = [noise_s])

With a deep transition between each step:

def deep_step_fn(i_for_H_t, i_for_T_t, y_tm1, noise_s):
  s_lm1 = y_tm1
  for l in range(transition_depth):
    if l == 0:
      H = T.tanh(i_for_H_t + linear(s_lm1, params, hidden_size, 
hidden_size, init_scale))
      Tr = T.nnet.sigmoid(i_for_T_t + linear(s_lm1, params, hidden_
size, hidden_size, init_scale))
    else:
      H = T.tanh(linear(s_lm1, params, hidden_size, hidden_size, init_
scale, bias_init=init_H_bias))
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      Tr = T.nnet.sigmoid(linear(s_lm1, params, hidden_size, hidden_
size, init_scale, bias_init=init_T_bias))
    s_l = H * Tr + s_lm1 * ( 1 - Tr )
    s_lm1 = s_l
  y_t = s_l
  return y_t

The recurrent hidden state of the RHN is sticky (the last hidden state of one batch is 
carried over to the next batch, to be used as an initial hidden state). These states are 
kept in a shared variable.

Let's run the mode:

python train_stacked.py

The number of parameters of the stacked RHN is 84,172,000, its speed 420 wps  
on the GPU.

This model is the new state-of-the-art model for recurrent neural network accuracy  
on texts.

Further reading
You can refer to the following topics for more insights:

• Highway Networks at: https://arxiv.org/abs/1505.00387
• Depth-Gated LSTM at: https://arxiv.org/abs/1508.03790
• Learning Longer Memory in Recurrent Neural Networks at: https://arxiv.

org/abs/1412.7753

• Grid Long Short-Term Memory, Nal Kalchbrenner, Ivo Danihelka, Alex Graves
• Zilly, J, Srivastava, R, Koutnik, J, Schmidhuber, J., Recurrent Highway 

Networks, 2016
• Gal, Y, A Theoretically Grounded Application of Dropout in Recurrent Neural 

Networks, 2015.
• Zaremba, W, Sutskever, I, Vinyals, O, Recurrent neural network  

regularization, 2014.
• Press, O, Wolf, L, Using the Output Embedding to Improve Language  

Models, 2016.
• Gated Feedback Recurrent Neural Networks: Junyoung Chung, Caglar 

Gulcehre, Kyunghyun Cho, Yoshua Bengio 2015
• A Clockwork RNN: Jan Koutník, Klaus Greff, Faustino Gomez, Jürgen 

Schmidhuber 2014

https://arxiv.org/abs/1505.00387
https://arxiv.org/abs/1412.7753
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Summary
A classic dropout method to improve network robustness may be applied to 
recurrent network sequence-wise or batch-wise to avoid instability and destruction 
of the recurrent transition. For example, when applied on word inputs/outputs, it 
is equivalent to removing the same words from the sentence, replacing them with a 
blank value.

The principle of stacking layers in deep learning to improve accuracy applies to 
recurrent networks that can be stacked in the depth direction without burden.

Applying the same principle in the transition of the recurrent nets increases the 
vanishing/exploding issue, but is offset by the invention of the highway networks 
with identity connections.

Advanced techniques for recurrent neural nets give state-of-the-art results in 
sequence prediction.
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Learning from the 
Environment with 

Reinforcement
Supervised and unsupervised learning describe the presence or the absence of labels 
or targets during training. A more natural learning environment for an agent is to 
receive rewards when the correct decision has been taken. This reward, such as 
playing correctly tennis for example, may be attributed in a complex environment,  
and the result of multiple actions, delayed or cumulative.

In order to optimize the reward from the environment for an artificial agent, the 
Reinforcement Learning (RL) field has seen the emergence of many algorithms,  
such as Q-learning, or Monte Carlo Tree Search, and with the advent of deep 
learning, these algorithms have been revised into new methods, such as  
deep-Q-networks, policy networks, value networks, and policy gradients.

We'll begin with a presentation of the reinforcement learning frame, and its potential 
application to virtual environments. Then, we'll develop its algorithms and their 
integration with deep learning, which has solved the most challenging problems in 
artificial intelligence.

The points covered in this chapter are the following:

• Reinforcement learning
• Simulation environments
• Q-learning
• Monte Carlo Tree Search
• Deep Q-networks
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• Policy gradients
• Asynchronous gradient descents

To simplify the development of our neural nets in this chapter, we'll use Keras, the 
high level deep learning library on top of Theano I presented in Chapter 5, Analyzing 
Sentiment with a Bidirectional LSTM.

Reinforcement learning tasks
Reinforcement learning consists of training an agent, that just needs occasional 
feedback from the environment, to learn to get the best feedback at the end. The 
agent performs actions, modifying the state of the environment.

The actions to navigate in the environment can be represented as directed edges 
from one state to another state as a graph, as shown in the following figure:

A robot, working in a real environment (walking robots, control of motors, and so 
on) or a virtual environment (video game, online games, chat room, and so on) has  
to decide which movements (or keys to strike) to receive the maximum reward:
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Simulation environments
Virtual environments make it possible to simulate thousands to millions of 
gameplays, at no other cost than the computations. For the purpose of benchmarking 
different reinforcement learning algorithms, simulation environments have been 
developed by the research community.

In order to find the solutions that generalize well, the Open-AI non-profit artificial 
intelligence research company, associated with business magnate Elon Musk, that 
aims to carefully promote and develop friendly AI in such a way as to benefit 
humanity as a whole, has gathered in its open source simulation environment, 
Open-AI Gym (https://gym.openai.com/), a collection of reinforcement tasks and 
environments in a Python toolkit to test our own approaches on them. Among these 
environments, you'll find:

• Video games from Atari 2600, a home video game console released by Atari 
Inc in 1977, wrapping the simulator from the Arcade Learning Environment, 
one of the most common RL benchmark environment:
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• MuJoCo, a physics simulator for evaluating agents on continuous  
control tasks:

• Other well-known games such as Minecraft, Soccer, Doom, and many others:

Let's install Gym and its Atari 2600 environment:

pip install gym
pip install gym[atari]

It is also possible to install all environments with:

pip install gym[all]

Interacting with the gym environment is pretty simple with the env.step() method 
that, given an action we choose for the agent, returns the new state, the reward, and 
whether the game has terminated.
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For example, let's sample a random action:

import gym

env = gym.make('CartPole-v0')
env.reset()

for _ in range(1000):
    env.render()
    action = env.action_space.sample()
    next_state, reward, done, info = env.step(action)
    if done:
        env.reset()

Gym also provides sophisticated monitoring methods, to record videos and 
algorithm performance. The records can be uploaded to Open-AI API for scoring 
with other algorithms.

One might also look at:

• 3D car racing simulator Torcs (http://torcs.sourceforge.net/), which 
is more realistic with smaller discretization of actions, but with less sparse 
rewards than simple Atari games, and also fewer possible actions than 
continuous motor control in MuJoCo:
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• 3D environment called Labyrinth for randomly generated mazes:

Q-learning
A major approach to solve games has been the Q-learning approach. In order to fully 
understand the approach, a basic example will illustrate a simplistic case where the 
number of states of the environment is limited to 6, state 0 is the entrance, state 5 
is the exit. At each stage, some actions make it possible to jump to another state, as 
described in the following figure:
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The reward is, let's say, 100, when the agent leaves state 4 to state 5. There isn't any 
other reward for other states since the goal of the game in this example is to find the 
exit. The reward is time-delayed and the agent has to scroll through multiple states 
from state 0 to state 4 to find the exit.

In this case, Q-learning consists of learning a matrix Q, representing the value of a 
state-action pair:

• Each row in the Q-matrix corresponds to a state the agent would be in
• Each column the target state from that state

the value representing how much choosing that action in that state will move us 
close to the exit. If there isn't any action from state i leading to state j, we define 
a zero or negative value at position (i,j) in the Q-matrix. If there are one or more 
possible actions from state i to state j, then the value in the Q-matrix will be chosen  
to represent how state j will help us to achieve our goal.
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For example, leaving state 3 for state 0, will move the agent away from the exit, while 
leaving state 3 for state 4 gets us closer to the goal. A commonly used algorithm, 
known as a greedy algorithm, to estimate Q in the discrete space, is given by the 
recursive Bellman equation which is demonstrated to converge:

( ) ( ), max ,
a

Q S a r Q S aγ
′

′ ′= +

Here, S' is the new state when taking action a on state S; r defines the reward on 
the path from state S to S' (in this case it is null) and γ  is the discounting factor to 
discourage actions to states too far in the graph. The application of this equation 
multiple times will result in the following Q values:

In Q-learning, Q stands for quality representing the power of the action to get the 
best rewards. Since late rewards are discounted, the values correspond to maximum 
discounted future rewards for each (state, action) couple.

Note that the full graph outcome is not required as soon as we know the state values 
for the output nodes of the search subtree:

In this figure, the value 10 for nodes 1 and 3 are the optimal state value function 
v(s); that is, the outcome of a game under perfect play / optimal path. In practice,  
the exact value function is not known but approximated.

Such an approximation is used in combination with a Monte Carlo Tree Search 
(MCTS) in the DeepMind algorithm AlphaGo to beat the world champion in Go. 
MCTS consists of sampling actions given a policy, so that only the most likely actions 
from the current node to estimate its Q-value are retained in the Bellman equation:
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Deep Q-network
While the number of possible actions is usually limited (number of keyboard keys 
or movements), the number of possible states can be dramatically huge, the search 
space can be enormous, for example, in the case of a robot equipped with cameras 
in a real-world environment or a realistic video game. It becomes natural to use a 
computer vision neural net, such as the ones we used for classification in Chapter 7, 
Classifying Images with Residual Networks, to represent the value of an action given an 
input image (the state), instead of a matrix:
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The Q-network is called a state-action value network and predicts action values 
given a state. To train the Q-network, one natural way of doing it is to have it fit  
the Bellman equation via gradient descent:

( ) ( )
2

= max , , / 2
a

r Q S a Q S aθ θγ
′

 
′ ′+ −  

 
L

Note that, ( )max Q ,a S aθ′ ′ ′  is evaluated and fixed, while the descent is computed for 
the derivatives in, ( )Q ,S aθ  and that the value of each state can be estimated as the 
maximum of all state-action values.

After initializing the Q-network with random weights, the initial predictions 
are random, but as the network converges, the action given a particular state 
will become more and more predictable, so the exploration of new states drops. 
Exploiting a model trained online requires the forcing of the algorithm to continue to 
explore: the  greedy approach consists of doing a random action with a probability 
epsilon, otherwise following the maximum-reward action given by the Q-network. 
It is a kind of learning by trial-and-error. After a certain number of epochs,  is 
decayed to reduce exploration.

Training stability
Different methods are possible to improve stability during training. Online training, 
that is, training the model while playing the game, forgetting previous experiences, 
just considering the last one, is fundamentally unstable with deep neural networks: 
states that are close in time, such as the most recent states, are usually strongly 
similar or correlated, and taking the most recent states during training does not 
converge well.

To avoid such a failure, one possible solution has been to store the experiences in a 
replay memory or to use a database of human gameplays. Batching and shuffling 
random samples from the replay memory or the human gameplay database leads to 
more stable training, but off-policy training.

A second solution to improve stability is to fix the value of the parameter θ  in the 
target evaluation ( )max Q ,a S aθ′ ′ ′  for several thousands of updates of ( )Q ,S aθ , reducing 
the correlations between the target and the Q-values:

( ) ( )
2

= max , , / 2
a

r Q S a Q S aθθ
γ −

′

 
′ ′+ −  

 
L
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It is possible to train more efficiently with n-steps Q-learning, propagating the 
rewards on n preceding actions instead of one:

Q learning formula:

n-steps Q-learning formula:

Here, each step will benefit from n next rewards:

A last solution for training stability and efficiency is an asynchronous gradient 
descent with multiple agents executing in parallel, on multiple instances of the 
environment, with different exploration policies, so that each gradient update is 
less correlated: each learning agent runs in a different thread on the same machine, 
sharing its model and target model parameters with other agents, but computing the 
gradients for a different part of the environment. The parallel actor learners have a 
stabilization effect, enable on-policy reinforcement, a reduction in training time, and 
comparable performances on GPU or multi-core CPU, which is great!
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The stabilization effect leads to better data efficiency: the data efficiency is 
measured by the number of epochs (an epoch is when the full training dataset has 
been presented to the algorithm) required to converge to a desired training loss or 
accuracy. Total training time is impacted by data efficiency, parallelism (number of 
threads or machines), and the parallelism overhead (it is sublinear in the number of 
threads, given the number of cores, machines and algorithm distribution efficiency).

Let's see it in practice. To implement multiple agents exploring different parts  
of the environment, we'll run multiple processes with the Python multiprocessing 
module, one process for the model to update (GPU), and n processes for the agents 
exploring (CPU). The manager object of the multiprocessing module controls a 
server process holding the weights of the Q-network to share between processes.  
The communication channel to store the experiences of the agents and serve them 
once for the model update, is implemented with a process-safe queue:

from multiprocessing import *
manager = Manager()
weight_dict = manager.dict()
mem_queue = manager.Queue(args.queue_size)

pool = Pool(args.processes + 1, init_worker)

for i in range(args.processes):
    pool.apply_async(generate_experience_proc, (mem_queue, weight_
dict, i))

pool.apply_async(learn_proc, (mem_queue, weight_dict))

pool.close()
pool.join()

Now, let's generate experiences and enqueue them in the common queue object.

For that purpose, where each agent creates its game environment, compile the 
Q-network and load the weights from the manager:

env = gym.make(args.game)

load_net = build_networks(observation_shape, env.action_space.n)

load_net.compile(optimizer='rmsprop',  
    loss='mse',  
    loss_weights=[0.5, 1.])

while 'weights' not in weight_dict:
    time.sleep(0.1)
load_net.set_weights(weight_dict['weights'])
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To generate one experience, the agent chooses an action and executes it in its 
environment:

observation, reward, done, _ = env.step(action)

Each experience by the agent is stored in a list until the game is terminated or the list 
is longer than n_step, to evaluate the state-action value with n-steps Q-learning :

if done or counter >= args.n_step:
    r = 0.
    if not done:
        r = value_net.predict(observations[None, ...])[0]
    for i in range(counter):
        r = n_step_rewards[i] + discount * r
        mem_queue.put((n_step_observations[i], n_step_actions[i], r))

Once in a while, the agent updates its weights from the learning process:

load_net.set_weights(weight_dict['weights'])

Let's see now how to update the weights in the learning agent.

Policy gradients with REINFORCE 
algorithms
The idea of Policy Gradients (PG) / REINFORCE algorithms is very simple: it 
consists in re-using the classification loss function in the case of reinforcement 
learning tasks.

Let's remember that the classification loss is given by the negative log likelihood, and 
minimizing it with a gradient descent follows the negative log-likelihood derivative 
with respect to the network weights:

( )( )ln g y
θ
∂
∂

Here, y is the select action, ( )g y  the predicted probability of this action given inputs X 
and weights θ .
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The REINFORCE theorem introduces the equivalent for reinforcement learning, 
where r is the reward. The following derivative:

( ) ( )ln g y
r b

θ
∂

−
∂

represents an unbiased estimate of the derivative of the expected reward with 
respect to the network weights:

( )|E r θ
θ

∂
∂

So, following the derivative will encourage the agent to maximize the reward.

Such a gradient descent enables us to optimize a policy network for our agents: 
a policy ( )a | sp  is a probability distribution over legal actions, to sample actions to 
execute during online learning, and can be approximated with a parameterized 
neural net as well.

It is particularly useful in the continuous case, for example for motor control,  
where discretization of the action space might lead to some suboptimal artifacts  
and the maximization over an action-value network Q is not possible under  
infinite action space.

Moreover, it is possible to enhance the policy network with recurrency (LSTM, 
GRU,) so that the agent selects its actions with respect to multiple previous states.

The REINFORCE theorem gives us a gradient descent to optimize the parametrized 
policy network. To encourage exploration in this policy-based case, it is also possible 
to add a regularization term, the entropy of the policy, to the loss function.

Under this policy, it is possible to compute the value of every state ( )V sπ :

• Either by playing the game from that state with the policy
• Or, if parameterized into a state value network, by gradient descent, the 

current parameter serving as target, as for the state-action value network 
seen in the previous section with discounted rewards:

( ) ( )V s r V sπ πγ ′= +
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This value is usually chosen as reinforcement baseline b to reduce the variance of the 
estimate of the policy gradient, and the Q-value can be used as the expected reward:

( ) ( ),R Q s a r V sπγ ′= = +

The first factor in the REINFORCE derivative:

is called the advantage of action a in state s.

Both gradient descents, for the policy network and for the value network, can be 
performed asynchronously with our parallel actor learners.

Let's create our policy network and state value network, sharing their first layers,  
in Keras:

from keras.models import Model
from keras.layers import Input, Conv2D, Flatten, Dense

def build_networks(input_shape, output_shape):
    state = Input(shape=input_shape)
    h = Conv2D(16, (8, 8) , strides=(4, 4), activation='relu', data_
format="channels_first")(state)
    h = Conv2D(32, (4, 4) , strides=(2, 2), activation='relu', data_
format="channels_first")(h)
    h = Flatten()(h)
    h = Dense(256, activation='relu')(h)

    value = Dense(1, activation='linear', name='value')(h)
    policy = Dense(output_shape, activation='softmax', name='policy')
(h)

    value_network = Model(inputs=state, outputs=value)
    policy_network = Model(inputs=state, outputs=policy)
    train_network = Model(inputs=state, outputs=[value, policy])

    return value_network, policy_network, train_network
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Our learning process builds the model as well, shares the weights to other processes, 
and compiles them for training with their respective losses:

_, _, train_network = build_networks(observation_shape, env.action_
space.n)
weight_dict['weights'] = train_net.get_weights()
 
from keras import backend as K

def policy_loss(advantage=0., beta=0.01):
    def loss(y_true, y_pred):
        return -K.sum(K.log(K.sum(y_true * y_pred, axis=-1) + \ 
   K.epsilon()) * K.flatten(advantage)) + \
            beta * K.sum(y_pred * K.log(y_pred + K.epsilon()))
    return loss

def value_loss():
    def loss(y_true, y_pred):
        return 0.5 * K.sum(K.square(y_true - y_pred))
    return loss

train_net.compile(optimizer=RMSprop(epsilon=0.1, rho=0.99),
            loss=[value_loss(), policy_loss(advantage, args.beta)])

The policy loss is a REINFORCE loss plus an entropy loss to encourage exploration. 
The value loss is a simple mean square error loss.

De-queueing the experiences into a batch, our learning process trains the model on 
the batch and updates the weights dictionary:

loss = train_net.train_on_batch([last_obs, advantage], [rewards, 
targets])

To run the full code:

pip install -r requirements.txt

python 1-train.py --game=Breakout-v0 --processes=16
python 2-play.py --game=Breakout-v0 --model=model-
Breakout-v0-35750000.h5

Learning took about 24 hours.

A policy-based advantage actor critic usually outperforms value-based methods.
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Related articles
You can refer to the following articles:

• Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement 
Learning, Ronald J. Williams, 1992

• Policy Gradient Methods for Reinforcement Learning with Function Approximation, 
Richard S. Sutton, David McAllester, Satinder Singh, Yishay Mansour, 1999

• Playing Atari with Deep Reinforcement Learning, Volodymyr Mnih, Koray 
Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan 
Wierstra, Martin Riedmiller, 2013

• Mastering the Game of Go with Deep Neural Networks and Tree Search, David 
Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George 
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda 
Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John 
Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine 
Leach, Koray Kavukcuoglu, Thore Graepel & Demis Hassabis, 2016

• Asynchronous Methods for Deep Reinforcement Learning, Volodymyr Mnih, 
Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Tim Harley, 
Timothy P. LilliCrap, David Silver, Koray Kavukcuoglu, Feb 2016

• Deep Reinforcement Learning Radio Control and Signal Detection with KeRLym,  
a Gym RL Agent Timothy J. O'Shea and T. Charles Clancy, 2016

Summary
Reinforcement learning describes the tasks of optimizing an agent stumbling into 
rewards episodically. Online, offline, value-based, or policy-based algorithms have 
been developed with the help of deep neural networks for various games and 
simulation environments.

Policy-gradients are a brute-force solution that require the sampling of actions 
during training and are better suited for small action spaces, although they  
provide first solutions for continuous search spaces.

Policy-gradients also work to train non-differentiable stochastic layers in a neural 
net and back propagate gradients through them. For example, when propagation 
through a model requires to sample following a parameterized submodel, gradients 
from the top layer can be considered as a reward for the bottom network.



Learning from the Environment with Reinforcement

[ 230 ]

In more complex environments, when there is no obvious reward (for example 
understanding and inferring possible actions from the objects present in the 
environment), reasoning helps humans optimize their actions, for which research 
does not provide any solution currently. Current RL algorithms are particularly 
suited for precise plays, fast reflexes, but no long term planning and reasoning.  
Also, RL algorithms require heavy datasets, which simulation environments  
provide easily. But this opens up the question of scaling in the real world.

In the next chapter, we'll explore the latest solutions to generate new data 
undistinguishable from real-world data.
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Learning Features with 
Unsupervised Generative 

Networks
This chapter focuses on a new type of model, the generative models, which include 
Restricted Boltzmann Machines, Deep Belief Networks, Variational Auto 
Encoders, Autoregressive models, and Generative Adversarial Networks. For the 
first nets, we've limited the presentation to the theory, while the last is explained in 
detail with practical code and advice.

These nets do not require any labels to be trained, which is called unsupervised 
learning. Unsupervised learning helps compute features from the data, without the 
bias of the labels. These models are generative in the sense that they are trained to 
generate new data that sounds real.

The following points will be covered:

• Generative models
• Unsupervised learning
• Restricted Boltzmann Machines
• Deep belief networks
• Generative adversarial models
• Semi-supervised learning
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Generative models
A generative model in neural processing is a model that generates data given a noise 
vector z as input:

( ), Gx G z θ←

The purpose of the training is to find the parameters to generate data as close as 
possible to the real data.

Applications of generative networks include data dimensionality reduction, 
synthetic data generation, unsupervised feature learning, and pre-training / training 
efficiency. Pre-training helps generalization because pre-training focuses on the 
patterns in the data, and less on the data-label relation.

Restricted Boltzmann Machines
A Restricted Boltzmann Machine is the simplest generative net, composed of one 
fully connected hidden layer, as shown in the picture:

The full Boltzmann Machines have also hidden-to-hidden and visible-to-visible loop 
connections, while the Restricted version does not have any.

In the general case, RBM are defined as energy-based models, which means that they 
define a probability distribution through an energy function:

( )
( )

( )
( ),

,
E v E v h

h h
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− −
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Z is the partition function, and E(v) is the free energy function (does not depend on 
the hidden state).

Minimizing the negative log likelihood is equivalent to minimizing the 
energy function.

The RBM defines the energy function as a linearity in the parameters of the model:

( ) ,
,

, i i i i i i j j
i i i j

E v h b v c h hW v= − − −∑ ∑ ∑

The relation between the energy and the free energy is given by:

In the case of the RBM:

Here 
ih
∑  denotes the sum over possible values of the i-th hidden neuron.

The RBM are usually considered in the particular case where v and h are binomial 
values in {0,1}, so:

( ) ( ),1j j jP v h b h Wσ ⋅= = + ⋅
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The model is symmetric, following the symmetry in the model: hidden and visible 
have the same place in the energy function:

RBM works as a simple stochastic fully connected layer in both directions (from 
input to hidden, and from hidden to input).

The gradient or derivative of the negative log-likelihood for the RBM has  
two terms, defined as positive and negative phases, where the first term  
increases the probability of data, and the second term decreases the probability  
of generated samples:

( ) ( ) ( ) ( )log

v

p v E v E v
p v

θ θ θ
∂ ∂ ∂

− = −
∂ ∂ ∂∑

Here, the sum is over all possible inputs  weighted by its probability  
(the expectation). At the minima, any increase in the free energy of our  
data sample will decrease the expectation of the total data.

Empirically, such a sum in the negative phase can be transformed into a sum over N 
observed (v,h):

( )1
x

E x
N θ

∂
∂∑

To compute such a sum in practice, the probability of observing the sample (v,h) has 
to satisfy p(v | h) given by the above formula as well as p(h | v).

Sampling is performed via the contrastive divergence algorithm, in practice: v is 
sampled from the dataset, while h is drawn following its above distribution given 
v. This operation is repeated, to produce a new v given h, then a new h given 
v. In practice, this is sufficient to achieve samples closely distributed to the real 
distribution. These observed samples for v and h are referred to as negative particles, 
and the second term in the cost function decreases the probability of these generated 
samples, while the first term increases the probability of the data.
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Here is what the computation of the partition function with the negative particules 
would look like:

W = shared_glorot_uniform((n_visible, n_hidden), name='W')
hbias = shared_zeros(n_hidden, name='hbias')
vbias = shared_zeros(n_visible, name='vbias')
params = [W, hbias, vbias]

def sample_h_given_v(v0_sample):
    pre_sigmoid_h1 = T.dot(v0_sample, W) + hbias
    h1_mean = T.nnet.sigmoid(pre_sigmoid_h1)
    h1_sample = theano_rng.binomial(size=h1_mean.shape, n=1, p=h1_
mean, dtype=theano.config.floatX)
    return [pre_sigmoid_h1, h1_mean, h1_sample]

def sample_v_given_h(h0_sample):
    pre_sigmoid_v1 = T.dot(h0_sample, W.T) + vbias
    v1_mean = T.nnet.sigmoid(pre_sigmoid_v1)
    v1_sample = theano_rng.binomial(size=v1_mean.shape, n=1, p=v1_
mean, dtype=theano.config.floatX)
    return [pre_sigmoid_v1, v1_mean, v1_sample]

def gibbs_hvh(h0_sample):
    pre_sigmoid_v1, v1_mean, v1_sample = sample_v_given_h(h0_sample)
    pre_sigmoid_h1, h1_mean, h1_sample = sample_h_given_v(v1_sample)
    return [pre_sigmoid_v1, v1_mean, v1_sample,
            pre_sigmoid_h1, h1_mean, h1_sample]

chain_start = persistent_chain
(
    [
        pre_sigmoid_nvs,
        nv_means,
        nv_samples,
        pre_sigmoid_nhs,
        nh_means,
        nh_samples
    ],
    updates
) = theano.scan(
    gibbs_hvh,
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    outputs_info=[None, None, None, None, None, chain_start],
    n_steps=k,
    name="gibbs_hvh"
)

chain_end = nv_samples[-1]

def free_energy(v_sample):
    wx_b = T.dot(v_sample, W) + hbias
    vbias_term = T.dot(v_sample, vbias)
    hidden_term = T.sum(T.log(1 + T.exp(wx_b)), axis=1)
    return -hidden_term - vbias_term

cost = T.mean(free_energy(x)) - T.mean(free_energy(chain_end))

The pictures of the filters trained on MNIST dataset after 15 epochs:
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And a mini-batch of negative particles (1,000 steps of sampling between each row):

Deep belief bets
A deep belief network (DBN) is a stack of multiple RBMs to increase their 
representative power and better capture patterns in the data.

The training occurs layer by layer, first considering there is only one RBM with the 
hidden state 1h . Once the weights of the RBM have been trained, these weights are 
kept fixed and the hidden layer of the first RBM 1h  is considered as the visible layer 
for a second RBM, with one hidden state 2h . Each new RBM will capture patterns 
that have not been captured by the previous RBM as in the following diagram:

It can be shown that each add-on of a new RBM on top of the stack decreases the 
negative log likelihood.

As last step, it is possible to use these weights in a classification network, by simply 
adding a linear layer and a softmax layer on top of the final hidden state, and fine-
tuning all the weights via gradient descent training, as usual.
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The application to data dimensionality remains the same, with the unrolling of all 
layers to produce a decoder network, with weights equal to the transpose of the 
weights in the encoder network (initial multi-layer RBM):

Such an unrolled network is called an auto encoder.

In practice, training directly via a gradient descent without the greedy layer by layer 
training would require finding the right initialization, which could be a lot trickier, 
as the weight initialization has to be close enough to the solution. That is why the 
commonly used approach for auto encoders is to train each RBM separately.

Generative adversarial networks
Since the partition function in the previous models is untractable and requires 
contrastive divergence algorithm with Gibbs sampling, game theory has recently 
delivered a new class of methods for learning generative models, the Generative 
adversarial networks (GANs), which enjoys great success today.
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Generative adversarial networks are composed of two models that are alternatively 
trained to compete with each other. The generator network G is optimized to 
reproduce the true data distribution, by generating data that is difficult for the 
discriminator D to differentiate from real data. Meanwhile, the second network D 
is optimized to distinguish real data and synthetic data generated by G. Overall, 
the training procedure is similar to a two-player min-max game with the following 
objective function:

Here, x is real data sampled from real data distribution, and z the noise vector of the 
generative model. In some ways, the discriminator and the generator can be seen as 
the police and the thief: to be sure the training works correctly, the police is trained 
twice as much as the thief.

Let's illustrate GANs with the case of images as data. In particular, let's again take 
our example from Chapter 2, Classifying Handwritten Digits with a Feedforward Network 
about MNIST digits, and consider training a generative adversarial network, to 
generate images, conditionally on the digit we want.

The GAN method consists of training the generative model using a second model, 
the discriminative network, to discriminate input data between real and fake. In this 
case, we can simply reuse our MNIST image classification model as discriminator, 
with two classes, real or fake, for the prediction output, and also condition it on the 
label of the digit that is supposed to be generated. To condition the net on the label, 
the digit label is concatenated with the inputs:

def conv_cond_concat(x, y):
    return T.concatenate([x, y*T.ones((x.shape[0], y.shape[1], 
x.shape[2], x.shape[3]))], axis=1)

def discrim(X, Y, w, w2, w3, wy):
    yb = Y.dimshuffle(0, 1, 'x', 'x')
    X = conv_cond_concat(X, yb)
    h = T.nnet.relu(dnn_conv(X, w, subsample=(2, 2), border_mode=(2, 
2)), alpha=0.2 )
    h = conv_cond_concat(h, yb)
    h2 =  T.nnet.relu(batchnorm(dnn_conv(h, w2, subsample=(2, 2), 
border_mode=(2, 2))), alpha=0.2)
    h2 = T.flatten(h2, 2)
    h2 = T.concatenate([h2, Y], axis=1)
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    h3 = T.nnet.relu(batchnorm(T.dot(h2, w3)))
    h3 = T.concatenate([h3, Y], axis=1)
    y = T.nnet.sigmoid(T.dot(h3, wy))
    return y

Note the use of two leaky rectified linear units, with a leak of 
0.2, as activation for the first two convolutions.

To generate an image given noise and label, the generator network consists of a stack 
of deconvolutions, using an input noise vector z that consists of 100 real numbers 
ranging from 0 to 1:

To create a deconvolution in Theano, a dummy convolutional forward pass is 
created, which gradient is used as deconvolution:

def deconv(X, w, subsample=(1, 1), border_mode=(0, 0), conv_
mode='conv'):
    img = gpu_contiguous(T.cast(X, 'float32'))
    kerns = gpu_contiguous(T.cast(w, 'float32'))
    desc = GpuDnnConvDesc(border_mode=border_mode, 
subsample=subsample,
conv_mode=conv_mode)(gpu_alloc_empty(img.shape[0], kerns.shape[1], 
img.shape[2]*subsample[0], img.shape[3]*subsample[1]).shape, kerns.
shape)
    out = gpu_alloc_empty(img.shape[0], kerns.shape[1], img.
shape[2]*subsample[0], img.shape[3]*subsample[1])
    d_img = GpuDnnConvGradI()(kerns, img, out, desc)
    return d_img
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def gen(Z, Y, w, w2, w3, wx):
    yb = Y.dimshuffle(0, 1, 'x', 'x')
    Z = T.concatenate([Z, Y], axis=1)
    h = T.nnet.relu(batchnorm(T.dot(Z, w)))
    h = T.concatenate([h, Y], axis=1)
    h2 = T.nnet.relu(batchnorm(T.dot(h, w2)))
    h2 = h2.reshape((h2.shape[0], ngf*2, 7, 7))
    h2 = conv_cond_concat(h2, yb)
    h3 = T.nnet.relu(batchnorm(deconv(h2, w3, subsample=(2, 2), 
border_mode=(2, 2))))
    h3 = conv_cond_concat(h3, yb)
    x = T.nnet.sigmoid(deconv(h3, wx, subsample=(2, 2), border_
mode=(2, 2)))
    return x

Real data is given by the tuple (X,Y), while generated data is built from noise and 
label (Z,Y):

X = T.tensor4()
Z = T.matrix()
Y = T.matrix()

gX = gen(Z, Y, *gen_params)
p_real = discrim(X, Y, *discrim_params)
p_gen = discrim(gX, Y, *discrim_params)

Generator and discriminator models compete during adversarial learning:

• The discriminator is trained to label real data as real (1) and label generated 
data as generated (0), hence minimizing the following cost function:
d_cost = T.nnet.binary_crossentropy(p_real,      
   T.ones(p_real.shape)).mean() \
 + T.nnet.binary_crossentropy(p_gen, T.zeros(p_gen.shape)).
mean()

• The generator is trained to deceive the discriminator as much as possible.  
The training signal for the generator is provided by the discriminator 
network (p_gen) to the generator:

g_cost = T.nnet.binary_crossentropy(p_gen,T.ones(p_gen.shape)).
mean()

The same as usual follows. Cost with respect to the parameters for each model is 
computed and training optimizes the weights of each model alternatively, with 
two times more the discriminator. In the case of GANs, competition between 
discriminator and generator does not lead to decreases in each loss.
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From the first epoch:

To the 45th epoch:

Generated examples look closer to real ones:
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Improve GANs
GANs are recent and very promising but still undergoing heavy research today.  
Yet, there are ways to improve the previous results.

First, as for RBM and other networks, GANs can be stacked in order to increase their 
generative power. As an example, the StackGan model proposes to use two stacked 
GANs for high quality image generation: the first GAN generates a coarse and 
low resolution image, while the second uses this generated sample as the input to 
generate an image of higher definition and realism, in which details of the objects  
are precised.

One of the main issues with GAN is the model collapse, which makes them difficult 
to train. Model collapse occurs when the generator begins to ignore the input noise 
and learns to generate only one sample, always the same. Diversity in the generation 
has collapsed. One very nice way to deal with this comes from the S-GAN model, 
and consists of adding a third net to train with the generator. The purpose of this  
net is to predict back the noise given the input:

To optimize this third net with the generator, an entropy loss is added to the 
generator loss, to encourage the generated images x to be sufficiently dependent  
on the noise z. In other words, the conditional entropy H(x | z) has to be as  
low as possible:
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This third net predicts an auxiliary distribution Q to approximate the true posterior 
P(z | x) and can be proved to be a variational higher bound for H(x | z). Such a loss 
function helps the generator not to ignore the input noise.

Semi-supervised learning
Last but not least, such generative adversarial networks can be used to enhance 
supervised learning itself.

Suppose the objective is to classify K classes, for which an amount of labeled data is 
available. It is possible to add some generated samples to the dataset, which come 
from a generative model, and consider them as belonging to a (K+1)th class, the fake 
data class.

Decomposing the training cross-entropy loss of the new classifier between the two 
sets (real data and fake data) leads to the following formula:

Here, modelP  is the probability predicted by the model:

Note that if we know that the data is real:
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And training on real data (K classes) would have led to the loss:

Hence the loss of the global classifier can be rewritten:

The second term of the loss corresponds to the standard unsupervised loss for GAN:

The interaction introduced between the supervised and the unsupervised loss is  
still not well understood but, when the classification is not trivial, an unsupervised 
loss helps.

Further reading
You can refer to the following topics for more insights:

• Deeplearning.net tutorial on RBM: http://deeplearning.net/tutorial/
rbm.html

• Deeplearning.net tutorial on Deep Belief Nets: http://deeplearning.net/
tutorial/DBN.html

• Deeplearning.net tutorial on generating with RBM-RNN: http://
deeplearning.net/tutorial/rnnrbm.html

• Modeling Temporal Dependencies in High-Dimensional Sequences: Application 
to Polyphonic Music Generation and Transcription, Nicolas Boulanger-
Lewandowski, Yoshua Bengio, Pascal Vincent, 2012

https://arxiv.org/pdf/1406.2661.pdf
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• Generative Adversarial Networks, Ian J. Goodfellow, Jean Pouget-Abadie, 
Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, 
Yoshua Bengio, 2014

• Gans will change the world, Nikolai Yakovenko, 2016 https://medium.com/@
Moscow25/

• Pixel Recurrent Neural Networks, Aaron van den Oord, Nal Kalchbrenner, 
Koray Kavukcuoglu, 2016

• InfoGAN: Interpretable Representation Learning by Information Maximizing 
Generative Adversarial Nets, Xi Chen, Yan Duan, Rein Houthooft, John 
Schulman, Ilya Sutskever, Pieter Abbeel, 2016

• StackGAN: Text to Photo-realistic Image Synthesis with 
Stacked Generative Adversarial Networks, Han Zhang, Tao Xu, Hongsheng Li, 
Shaoting Zhang, Xiaolei Huang, Xiaogang Wang, Dimitris Metaxas, 2016

• Stacked Generative Advanced Networks, Xun Huang, Yixuan Li, Omid 
Poursaeed, John Hopcroft, Serge Belongie, 2016

• Adversarial Learning for Neural Dialogue Generation, Jiwei Li, Will Monroe, 
Tianlin Shi, Sébastien Jean, Alan Ritter, Dan Jurafsky, 2017

• Improved Techniques for Training GANs, Tim Salimans, Ian Goodfellow, 
Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen, 2016

• Unsupervised Representation Learning with Deep Convolutional Generative 
Adversarial Networks, Alec Radford, Luke Metz, Soumith Chintala, 2015

Summary
Generative adversarial networks are a very active area of research today.  
They belong to the family of generative models, which includes RBM and  
deep belief networks.

Generative models aim at generating more data, or learning better features for 
supervised and other tasks in an unsupervised way.

Generative models can be conditioned on some environmental input, and try to find 
the hidden variables behind the real data.

These models, the most advanced, complete the overview of deep learning nets with 
Theano. The next chapter will look at some advanced concepts to extend Theano and 
the future of deep learning.

https://medium.com/@Moscow25/
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Extending Deep Learning 
with Theano

This chapter gives clues to go further with both Theano and Deep Learning. First, it 
presents how to create new operators for the Theano computation graph in Python 
or C, either for the CPU or the GPU. Then, interactions with other Deep Learning 
frameworks are studied with the support of code repositories and libraries that 
enable back-and-forth conversion with other technologies.

Lastly, to complete the possibilities offered by the field of Deep Learning with 
Theano, we develop the concepts of a new General Artificial Intelligence field.

The topics covered in this chapter are as follows:

• Writing new operators for Theano computation graphs
• Python code for CPU and GPU
• The C API for CPU and GPU
• Sharing models with other Deep Learning frameworks
• Cloud GPUs
• Meta learning, gradual learning, and guided learning
• General Artificial Intelligence

This chapter gives a complete overview of Deep Learning with Theano.
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Theano Op in Python for CPU
As a mathematical compilation engine, Theano's purpose is to compile a graph of 
computations in an optimal way for a target platform.

The development of new operators is possible in Python or C for compilation either 
on the CPU or GPU. 

First, we address the simplest case, in Python for CPU, which will enable you to add 
new operations very easily and quickly.

To fix the ideas, let's implement a simple affine operator that performs the affine 
transformation a * x + b, given x as the input. 

The operator is defined by a class deriving from the generic theano.Op class:

import theano, numpy

class AXPBOp(theano.Op):
    """
    This creates an Op that takes x to a*x+b.
    """
    __props__ = ("a", "b")

    def __init__(self, a, b):
        self.a = a
        self.b = b
        super(AXPBOp, self).__init__()

    def make_node(self, x):
        x = theano.tensor.as_tensor_variable(x)
        return theano.Apply(self, [x], [x.type()])

    def perform(self, node, inputs, output_storage):
        x = inputs[0]
        z = output_storage[0]
        z[0] = self.a * x + self.b

    def infer_shape(self, node, i0_shapes):
        return i0_shapes
    def grad(self, inputs, output_grads):
        return [self.a * output_grads[0]]
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mult4plus5op = AXPBOp(4,5)

x = theano.tensor.matrix()
y = mult4plus5op(x)
f = theano.function([x], y)

res = f(numpy.random.rand(3,2))

Let's understand this example.

The __props__ property is set to the two parameter names, a and b, on which the 
operator depends. It will automatically generate the __eq__(), __hash__(), and __
str_() methods for us so that if we create two different objects with the same values 
for parameters a and b, Theano will consider them as equal operators:

>>> mult4plus5op2 = AXPBOp(4,5)

>>> mult4plus5op == mult4plus5op2
True

>>> hash(mult4plus5op)
-292944955210390262

>>> hash(mult4plus5op2)
-292944955210390262

Also, the parameters a and b will appear when printing the op:

>>> theano.printing.pprint(y)
AXPBOp{a=4, b=5}.0

>>> theano.printing.pydotprint(y)
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If __props__ is not specified, it is required to define the __eq__(), __hash__(), and 
__str_() methods manually.

The make_node() method creates the node to be included in the graph and is run 
when the mult4plus5op object is applied to the input x. Node creation is performed 
with the theano.Apply() method that takes as arguments the input variables and 
the type of the output. To enforce that the inputs are variables, the as_tensor_
variable() method is called on the input to transform any NumPy array into a 
variable. This is the place where we define the type of the output given the input 
as well as to check whether the inputs are compatible with the operator and raise a 
TypeError otherwise.

Note that it is possible to generate the make_node() method automatically, as we did 
previously with the __props__ attribute for the __eq__() method, but in this case, 
with the itypes and otypes properties defining the types of the inputs and outputs:

itypes = [theano.tensor.dmatrix]
otypes = [theano.tensor.dmatrix]

The perform() method defines the computations in Python to be performed for 
this operator. Since it is possible to implement operators on multiple inputs that 
return multiple outputs, the inputs and outputs are given as lists. A second output 
would be stored in output_storage[1][0]. Outputs might be already allocated by 
previous values in order to reuse memory. They will always be of the good dtype 
object, but not necessary of the right shape and stride. It is good to re-allocate them 
when they are not of the good shape.

The last two methods, infer_shape() and grad(), are optional. The first 
one is used when the output does not need to be computed, but only a shape 
information is necessary to perform the computation—such a case occurs during 
Theano optimization procedures. The second is used when the output needs to be 
differentiated under the grad() method:

>>> dy=theano.tensor.grad(y.sum(), x)

>>> theano.printing.pprint(dy)
'(TensorConstant{4} * fill(AXPBOp{a=4, b=5}(<TensorType(float32, 
matrix)>), fill(Sum{acc_dtype=float64}(AXPBOp{a=4, b=5}
(<TensorType(float32, matrix)>)), TensorConstant{1.0})))'
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>>> df = theano.function([x], dy)

>>> theano.printing.debugprint(df)
Alloc [id A] ''   2
 |TensorConstant{(1, 1) of 4.0} [id B]
 |Shape_i{0} [id C] ''   1
 | |<TensorType(float32, matrix)> [id D]
 |Shape_i{1} [id E] ''   0
   |<TensorType(float32, matrix)> [id D]

In the same way, it is possible to define the R-operator function of the operator.

Theano Op in Python for the GPU
Let's take a look at what happens when we run this operator in a graph in the GPU 
config mode:

>>> y = mult4plus5op(2 * x) + 4 * x

>>> f = theano.function([x], y)

>>> theano.printing.debugprint(f)
HostFromGpu(gpuarray) [id A] ''   6
 |GpuElemwise{Composite{(i0 + (i1 * i2))}}[(0, 0)]<gpuarray> [id B] ''   
5
   |GpuFromHost<None> [id C] ''   4
   | |AXPBOp{a=4, b=5} [id D] ''   3
   |   |HostFromGpu(gpuarray) [id E] ''   2
   |     |GpuElemwise{mul,no_inplace} [id F] ''   1
   |       |GpuArrayConstant{[[ 2.]]} [id G]
   |       |GpuFromHost<None> [id H] ''   0
   |         |<TensorType(float32, matrix)> [id I]
   |GpuArrayConstant{[[ 4.]]} [id J]
   |GpuFromHost<None> [id H] ''   0
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Since we have only defined a CPU implementation of the new operator in Python 
and the full graph is running on GPU, the data is transferred back and forth to CPU 
in the middle of the graph to apply our new CPU operator:

To avoid the inefficiency of the transfers inside the graph, let's create the same 
operator in Python for the GPU.

For this, you will have to simply modify the make_node() and perform() methods 
of the operator, as follows:

from theano.gpuarray.type import get_context

def make_node(self, x):
    x = as_gpuarray_variable(x, self.context_name)

    x_arg = pygpu.elemwise.arg('x', 'float32', read=True)
    c_arg = pygpu.elemwise.arg('c', 'float32', read=True, write=True)
    self.my_op = pygpu.elemwise.GpuElemwise(get_context(self.context_
name), "c = " + str(self.a) + " * x + " + str(self.b), [x_arg, c_arg], 
convert_f16=True)

    return Apply(self, [x], [x.type()])

def perform(self, node, inputs, output_storage):
    x = inputs[0]
    z = output_storage[0]
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    z[0] = pygpu.empty(x.shape, dtype=x.dtype, context=get_
context(self.context_name))
    self.my_op( x, z[0])

Not many changes.

In the make_node() method, as_tensor_variable() is replaced by as_gpuarray_
variable(), which requires the context that is one part of the type definition of a 
GPU variable. The get_context() method transforms the context name we have 
chosen for the device into a GPUContext for the pygpu library.

In the perform() method, computations are performed on GPU thanks to the pygpu 
library that contains an element-wise operator on GPU as well as the Basic Linear 
Algebra Subprograms (BLAS) methods, such as the GEneral Matrix to Matrix 
Multiplication (GEMM) and General Matrix to Vector Multiplication (GEMV) 
operations.

Let's now take a look at the compiled graph when this new operator is inside a 
bigger graph on GPU:

HostFromGpu(gpuarray) [id A] ''   4
 |GpuElemwise{Add}[(0, 1)]<gpuarray> [id B] ''   3
   |GpuArrayConstant{[[ 4.]]} [id C]
   |GpuAXPBOp{a=4, b=5, context_name='dev0'} [id D] ''   2
     |GpuElemwise{Mul}[(0, 1)]<gpuarray> [id E] ''   1
       |GpuArrayConstant{[[ 2.]]} [id F]
       |GpuFromHost<dev0> [id G] ''   0
         |<TensorType(float32, matrix)> [id H]
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For readability, we have prefixed the name of the class of the operator for GPU with 
Gpu; for example, GpuAXPBOp.

Theano Op in C for CPU
Another inefficiency arises from the fact the Python implementation of an operator 
adds a significant overhead each time computations are performed, that is, for each 
instance of our operator in the graph. The Python code is not compiled as the rest of 
the graph by Theano in C and the overhead occurs when the C implementation is 
wrapped into Python and data is exchanged.

To remedy this, it is possible to directly write some C code that will be incorporated 
into the code of the rest of the graph and compiled together.

When implementing an operator directly in C, NumPy is the underlying library to 
manage arrays, with the the NumPy-API extending Python C-API. The Python class 
defining the new C operator does not have to implement the perform() method; 
instead, it returns the C code to incorporate in the c_code(), c_support_code() and 
c_support_code_apply() methods:

def c_code_cache_version(self):
    return (6, 0)

def c_support_code(self):
    c_support_code = """
    bool same_shape(PyArrayObject* arr1, PyArrayObject* arr2)
    {
        if( PyArray_NDIM(arr1) != PyArray_NDIM(arr2)) {
            return false;
        }
        for(int i = 0; i < PyArray_NDIM(arr2) ; i++) {
            if (PyArray_DIMS(arr1)[0] == PyArray_DIMS(arr2)[0]) {
                return false;
            }
        }
        return true;
    }
    """

    return c_support_code
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def c_support_code_apply(self, node, name):
    dtype_x = node.inputs[0].dtype
    dtype_z = node.outputs[0].dtype

    a = self.a
    b = self.b

    c_support_code = """
    void elemwise_op_%(name)s(npy_%(dtype_x)s* x_ptr, npy_intp* x_str, 
int itemsize_x,
        npy_%(dtype_z)s* z_ptr, npy_intp* z_str, int itemsize_z,
        int nbDims, npy_intp* dims)
    {
        npy_intp stride_x = (npy_intp)(1);
        npy_intp stride_z = (npy_intp)(1);
        for (int i = 0; i < nbDims; i ++) {
            stride_x = stride_x * x_str[i] / itemsize_x;
            stride_z = stride_z * z_str[i] / itemsize_z;
        }
        for (int i=0; i < dims[0]; i++)
            if (nbDims==1) {
                z_ptr[i * z_str[0]/itemsize_z] = x_ptr[i * x_str[0] / 
itemsize_x] * ((npy_%(dtype_z)s) %(a)s) + ((npy_%(dtype_z)s)%(b)s);
            } else {
                elemwise_op_%(name)s( x_ptr + i * stride_x , x_str + 
1, itemsize_x,
                    z_ptr + i * stride_z , z_str + 1, itemsize_z,
                    nbDims - 1, dims + 1 );
            }
    }
    """

    return c_support_code % locals()

def c_code(self, node, name, inp, out, sub):
    x = inp[0]
    z = out[0]

    dtype_x = node.inputs[0].dtype
    dtype_z = node.outputs[0].dtype
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    itemsize_x = numpy.dtype(dtype_x).itemsize
    itemsize_z = numpy.dtype(dtype_z).itemsize

    typenum_z = numpy.dtype(dtype_z).num

    fail = sub['fail']

    c_code = """
    // Validate that the output storage exists and has the same
    // dimension as x.
    if (NULL == %(z)s || !(same_shape(%(x)s, %(z)s)))
    {
        /* Reference received to invalid output variable.
        Decrease received reference's ref count and allocate new
        output variable */
        Py_XDECREF(%(z)s);
        %(z)s = (PyArrayObject*)PyArray_EMPTY(PyArray_NDIM(%(x)s),
                                            PyArray_DIMS(%(x)s),
                                            %(typenum_z)s,
                                            0);

        if (!%(z)s) {
            %(fail)s;
        }
    }

    // Perform the elemwise operation
    ((npy_%(dtype_z)s *)PyArray_DATA(%(z)s))[0] = 0;
    elemwise_op_%(name)s((npy_%(dtype_x)s*)PyArray_DATA(%(x)s), 
PyArray_STRIDES(%(x)s), %(itemsize_x)s,
                            (npy_%(dtype_z)s*)PyArray_DATA(%(z)s), 
PyArray_STRIDES(%(z)s), %(itemsize_z)s,
                            PyArray_NDIM(%(x)s), PyArray_DIMS(%(x)s) 
);

    """

    return c_code % locals()

Let's now discuss the different parts:
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When the c_code_cache_version() is implemented, Theano will cache the 
compiled code to save some compilation time the next time the operator is 
incorporated into a graph, but whenever we modify the code of the C op,  
the version number has to be incremented.

The code placed in the c_support_code() and c_support_code_apply() methods 
is included in the global scope of the C program. The code placed in the c_support_
code_apply() and c_code() methods has to be specific to each apply of the op in 
the graph; in particular, in this case, they depend on the type of the input. And since 
the c_support_code_apply() code is included in the global scope, the methods are 
named after the op name.

PyArray_NDIM, PyArray_DIMS, PyArray_STRIDES, and PyArray_DATA are the 
macros to access the number of dimensions, the dimensions, the strides of the array, 
and the data in the array, respectively, for each NumPy array in C, PyArrayObject. 
PyArray_EMPTY is the equivalent to the Python numpy.empty() method in C.

The NumPy PyArrayObject class inherits from the PyObject class from the Python 
C-API. The Py_XDECREF macro enables us to decrement the reference count to the 
output before memory is allocated for a new output array. As in the Python C-API, 
the NumPy C-API requires to correctly count references to objects. Theano does 
not guarantee that the output array has been allocated, nor does it guarantee if it 
has been allocated with the correct shape. This is why a test is performed at the 
beginning of the c_code().

Note that arrays can be strided, since they can be a view (or a subtensor) of an  
array (a tensor). It is possible to implement ops that create views or modify the 
inputs, as well.

There exist a few other possible methods to go further in the C implementation: 
c_libraries() and c_lib_dirs() to use external libraries, c_code_cleanup() 
to destroy memory allocations, and c_init_code() to execute some code at 
initialization.

Lastly, it is also possible to reference some C files inside the code to reduce the 
burden on the Python class. We do not detail these three last specificities.
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Theano Op in C for GPU
As you could have imagined, it is possible to combine both optimizations:

• Reduce the Python/C overhead by programming directly in C
• Write the code for the GPU

To write CUDA code for GPU, the code that will be run in parallel on the numerous 
cores of the GPU has to be packaged into a special function type named kernel.

For that purpose, the __init__(), make_node(), and c_code_cache_version() 
methods stay the same as for our Python example for GPU, but with a new gpu_
kernels() method to define new GPU kernels and the c_code() method (which 
replaces the perform() method again) to implement the C code, also named the  
host code, that orchestrates how and when to call the different kernels on GPU:

def gpu_kernels(self, node, name):
    code = """
KERNEL void axpb(GLOBAL_MEM %(ctype)s *x, GLOBAL_MEM  %(ctype)s *z, 
ga_size n, ga_size m) {
for (ga_size i = LID_0; i < n; i += LDIM_0) {
    for (ga_size j = LID_0; j < m; j += LDIM_0) {
        z[i*m + j] = %(write_a)s( 2 * x[i*m + j] );
    }
}
}""" % dict(ctype=pygpu.gpuarray.dtype_to_ctype(self.dtype),
        name=name, write_a=write_w(self.dtype))
    return [Kernel(
            code=code, name="axpb",
            params=[gpuarray.GpuArray, gpuarray.GpuArray, gpuarray.
SIZE, gpuarray.SIZE],
            flags=Kernel.get_flags(self.dtype),
            objvar='k_axpb_' + name)]

def c_code(self, node, name, inp, out, sub):
    n, = inp
    z, = out
    dtype_n = node.inputs[0].dtype
    fail = sub['fail']
    ctx = sub['params']
    typecode = pygpu.gpuarray.dtype_to_typecode(self.dtype)
    sync = bool(config.gpuarray.sync)



Chapter 13

[ 259 ]

    kname = self.gpu_kernels(node, name)[0].objvar
    s = """
    size_t dims[2] = {0, 0};
    size_t ls, gs;
    int err;
    dims[0] = %(n)s->ga.dimensions[0];
    dims[1] = %(n)s->ga.dimensions[1];
    Py_CLEAR(%(z)s);
    %(z)s = pygpu_zeros(2, dims,
                        %(typecode)s,
                        GA_C_ORDER,
                        %(ctx)s, Py_None);
    if (%(z)s == NULL) {
        %(fail)s
    }
    ls = 1;
    gs = 256;
    err = axpb_call(1, &gs, &ls, 0, %(n)s->ga.data, %(z)s->ga.data, 
dims[0], dims[1]);
    if (err != GA_NO_ERROR) {
        PyErr_Format(PyExc_RuntimeError,
                     "gpuarray error: kEye: %%s. n%%lu, m=%%lu.",
                     GpuKernel_error(&%(kname)s, err),
                     (unsigned long)dims[0], (unsigned long)dims[1]);
        %(fail)s;
    }
    if(%(sync)d)
        GpuArray_sync(&%(z)s->ga);
    """ % locals()

    return s

Let's review this code snippet.

A new GPU computation kernel is defined under the name axpb, and it is a simple 
C code with special GPU types and two macros: KERNEL to designate the kernel 
function (hiding the CUDA __global__ declaration for kernels) and GLOBAL_MEM for 
the variables defined globally, available both on the CPU and the GPU (in opposition 
to variables inside the kernel function that, by default, are local to the thread 
executed on a GPU core).
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Note that I implemented the operator for matrix (that is, two-dimensional) inputs only 
and the 256 threads will execute the same operations in parallel, while the operations 
could have been split into different groups and assigned to different threads.

The host code run on the CPU manages memory on both the CPU and GPU, and also 
launches kernels which are functions executed on the GPU device.

The allocation of a new GPU array is performed with the pygpu_zeros() method, 
which will from behind call the cudamalloc() method when using CUDA to 
allocate the array directly in the GPU memory. The operator instance does not need 
to manage the release of the memory allocated to outputs as well as data transfer 
between GPU and CPU since this is the role of Theano optimization to decide when 
to insert the transfer operators HostFromGpu and GpuFromHost.

The call to the kernel in the C code is performed via axpb_call(), that is, the name 
of the kernel followed by _call(). Note that there are four more arguments in the 
call than in the definition of the kernel method. These four arguments define how 
libgpuarray will execute or deploy the kernel on the cores.

To understand the GPU execution configuration for parallel programming, let's 
precise some basic concepts about a GPU first. A CUDA GPU is composed of 
Streaming Multiprocessors (SM), with a specification given by the compute 
capability in warp size, grid size, block size, the maximum number of threads per SM 
and per block, shared and local memory size, and maximum number of registrars:

(Source: https://en.wikipedia.org/wiki/CUDA)
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During execution, multiprocessors execute instructions for a group of 32 threads (as 
described in the preceding table), named warp, in the Single Instruction Multiple 
Data (SIMD) manner. When programming for parallel execution, you need to 
organize your threads into blocks that are as close as possible to the underlying 
architecture. For example, for an element-wise operation on matrices, as our 
AXPBOp, you could say that each thread is going to perform the operation on one 
element of the matrix. So, a computation on a 224 x 224 image will require 50,176 
threads. Let's say that the GPU has 8 multiprocessors with 1024 cores each. In the 
execution configuration, you can, for example, define a block size of 256 threads, 
and the number of blocks required to perform the complete computation will be 
196 blocks. In order to simplify the development of parallel programs, blocks can 
be organized into a multidimensional grid (up to 3 dimensions for a CC above 2.0, 
as shown in the preceding table), and in the case of an image input, it would be 
natural to use a two-dimensional grid of 14 x 14 blocks. It is up to you to organize the 
threads into blocks organized on a grid, but the best way to organize the threads is 
to follow the dimensionality of the underlying data, since it will be easier to split the 
data and affect it to different threads.

Each thread execution is provided with values to access its position in the grid that 
you can use inside the code:

• gridDim.x, gridDim.y, gridDim.z the dimensions of the grid of blocks of 
threads

• blockIdx.x, blockIdx.y, blockIdx.z the coordinate of the block on the 
grid

• blockDim.x, blockDim.y, blockDim.z the dimensions of the block
• threadIdx.x, threadIdx.y, threadIdx.z the coordinate of the thread in the 

block

In the case of our element-wise AXPBOp with one thread per element, the thread can 
fetch the data element given by the following row indice:

int i = blockIdx.x*blockDim.x + threadIdx.x;

To deploy, the first new four parameters in the kernel call correspond to:

• Dimensionality of the grid/blocks, in this case 2 for an image/matrice  
as input

• The sizes of launch grid, in this case is {14, 14}. Once the number of threads 
per block is defined (256 in our case), the number of blocks per grid is then 
determined by the problem size (here, the size of the matrix).
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• The sizes of launch blocks, in this case {16, 16} to go for 256 threads per block, 
as it is usually set to 128 or 256. It is better to choose a multiple of the warp 
size, since execution is performed per warp; if you set it to 250, then, 201 of 
our blocks will underperform: one warp of each block will not be used at its 
full parallel potential. It is possible to try different multiples of 32 and make 
the choice on the most efficient runs.

• The amount of dynamic shared memory to allocate, which is required when 
you define a shared memory (with the LOCAL_MEM macro) that is dynamic 
(when the amount of shared memory is not known at compile time). Shared 
memory designates memory shared between threads belonging to the 
same block of threads. On devices of compute capability 2.x and 3.x, each 
multiprocessor has 64 KB of on-chip memory that can be partitioned between 
L1 cache and shared memory (16, 32, or 48K). The L1 cache coalesces global 
memory accesses by threads in a warp into as few cache lines as possible. 
The alignment differences between each thread have a negligible effect on 
performance thanks to the cache. Inefficiencies arise in the strided access for 
second and third dimensions; in this case, the use of shared memory enables 
you to extract a 2D tile of a multidimensional array from global memory in 
a coalesced fashion into shared memory and have contiguous threads stride 
through the shared memory tile:

Coalesced transpose via shared memory, 
NVIDIA parallel for all
When the dimension of the data is not divisible into a block size times a grid size, 
threads dealing with data at the border will execute faster than other threads, and the 
kernel code has to be written in a way to check for out-of-bounds memory accesses.
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When programming in parallel, race conditions, as well as memory bank conflicts 
in shared memory, and data that cannot stay local to the thread in the available 
registrars are some new pains to check. Coalescing global memory accesses is by far 
the most critical aspect of achieving good performance. The NVIDIA® Nsight™ tool 
will help you develop, debug, and profile the code that executes on CPU and GPU.

Model conversions
When a model is saved, the resulting data is simply a list of arrays, that is, weight 
vectors (for biases) and matrices (for multiplications) and a name for each layer. 
It is quite simple to convert a model from one framework to another: it consists of 
loading a numerical array and checking the layer names. Here are a few conversion 
examples from and to Caffe Deep Learning framework written in C++:

• https://github.com/an-kumar/caffe-theano-conversion

• https://github.com/kencoken/caffe-model-convert

• https://github.com/piergiaj/caffe-to-theano

To convert variables between the Torch Deep Learning framework (written in Lua) 
and Theano, you simply need a tool to convert data from Lua to Python NumPy:

    https://github.com/imodpasteur/lutorpy

To convert models between Tensorflow and Theano, I would advise you to use the 
Keras library, which will stay up-to-date and enable to train models either in Theano 
or Tensorflow. For example, to convert a model from Tensorflow to Theano, keep 
your Keras install configured with Theano as we have seen in Chapter 5, Analyzing 
Sentiment with a Bidirectional LSTM, load the Tensorflow weights, and modify the 
layer names as follows:

from keras import backend as K
from keras.utils.conv_utils import convert_kernel
from keras.models import Model

# build your Keras model HERE
# then
model.load_weights('my_weights_tensorflow.h5')

https://github.com/imodpasteur/lutorpy
https://github.com/imodpasteur/lutorpy
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for layer in model.layers:
   if layer.__class__.__name__ in ['Convolution1D', 'Convolution2D']:
      original_w = K.get_value(layer.W)
      converted_w = convert_kernel(original_w)
      K.set_value(layer.W, converted_w)

model.save_weights('my_weights_theano.h5')

A mirror sequence of operations enables us to do the contrary, from Theano to 
Tensorflow.

Another advantage of designing networks in Keras is the possibility to train them 
directly in the cloud, using the Google Cloud Machine Learning Engine, built with 
Tensor Processing Units (TPU), an alternative to GPU, designed from the ground 
for machine learning.

Let's take our example from Chapter 5, Analyzing Sentiment with a Bidirectional LSTM.

To train the model in the cloud, I create a project named DeepLearning Theano in the 
Google console https://console.cloud.google.com/iam-admin/projects, and 
in the API manager of the project, enable the Machine Learning Engine API. A few 
installation requirements might be checked with instructions at: https://cloud.
google.com/ml-engine/docs/quickstarts/command-line, such as the Google 
Cloud SDK and the project configuration. With gcloud init command, your SDK 
configuration can be re-initialize to switch to the DeepLearning Theano project.

Let's upload the data in a newly created bucket in the cloud, given the region you 
choose (here europe-west1):

gsutil mb -l europe-west1 gs://keras_sentiment_analysis

gsutil cp -r sem_eval2103.train gs://keras_sentiment_analysis/sem_
eval2103.train

gsutil cp -r sem_eval2103.dev gs://keras_sentiment_analysis/sem_eval2103.
dev

gsutil cp -r sem_eval2103.test gs://keras_sentiment_analysis/sem_
eval2103.test

Since the model is executed on a instance in the cloud, it is required:

• To modify the Python script to load the file stream from the remote bucket 
instead of a local directory, with the library tensorflow.python.lib.
io.file_io.FileIO(train_file, mode='r') rather than the standard 
method open(train_file, mode='r'), with the same usage of the mode 
argument for both, 'r' for reading, w for writing,

https://console.cloud.google.com/iam-admin/projects
https://console.cloud.google.com/iam-admin/projects
https://cloud.google.com/ml-engine/docs/quickstarts/command-line
https://cloud.google.com/ml-engine/docs/quickstarts/command-line
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• To define a setup.py file to configure the libraries required in the cloud 
instance environment:
from setuptools import setup, find_packages

setup(name='example5',
  version='0.1',
  packages=find_packages(),
  description='keras on gcloud ml-engine',
  install_requires=[
      'keras',
      'h5py',
      'nltk'
  ],
  zip_safe=False)

• To define a cloud deployment configuration file, cloudml-gpu.yaml:

  trainingInput:
    scaleTier: CUSTOM
    # standard_gpu provides 1 GPU. Change to complex_model_m_gpu 
for 4 GPUs
    masterType: standard_gpu
    runtimeVersion: "1.0"

To check the training works locally before submitting it to Google ML Cloud, run the 
following command:

gcloud ml-engine local train --module-name 7-google-cloud.bilstm \

  --package-path ./7-google-cloud  -- --job-dir ./7-google-cloud \

  -t sem_eval2103.train -d sem_eval2103.dev -v sem_eval2103.test

If everything works fine locally, let's submit it to the cloud:

JOB_NAME="keras_sentiment_analysis_train_$(date +%Y%m%d_%H%M%S)"

gcloud ml-engine jobs submit training $JOB_NAME \
          --job-dir gs://keras_sentiment_analysis/$JOB_NAME \
          --runtime-version 1.0 \
          --module-name 7-google-cloud.bilstm  \
          --package-path ./7-google-cloud \
          --region europe-west1 \
          --config=7-google-cloud/cloudml-gpu.yaml \
          -- \
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          -t gs://keras_sentiment_analysis/sem_eval2103.train \
          -d gs://keras_sentiment_analysis/sem_eval2103.dev \
          -v gs://keras_sentiment_analysis/sem_eval2103.test

gcloud ml-engine jobs describe $JOB_NAME

Note that Google ML Cloud uses Tensorflow as backend.

The future of artificial intelligence
Chapter 2, Classifying Handwritten Digits with a Feedforward Network presented diverse 
optimization techniques (Adam, RMSProp, and so on) and mentioned second order 
optimization techniques. A generalization would be to also learn the update rule:

( )( )1 ,t t t tg fθ θ θ φ+ = + ∇
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Here, φ  is the parameter of the optimizer tg  to learn from different problem 
instances, a sort of generalization or transfer learning of the optimizer from problems 
to learn better on new problems. The objective to minimize under this learning to 
learn or meta-learning framework has to optimize the time to learn correctly and, 
consequently, be defined on multiple timesteps:

Where:

A recurrent neural network can be used as the optimizer model tg . Such a 
generalization technique that solves a multi-objective optimization problem 
improves the learning rate of the neural networks in general.

Researchers have been looking one step further, searching for general artificial 
intelligence, which  aims for a human-level skill set with the capacity to improve 
itself and acquire new skills in a gradual way, using its intrinsic and previously 
learned skills to search for the solutions of new optimization problems.

A skill could be defined as a tool of intelligence to narrow or constrain the search 
space and restrict the behavior of the robot in the infinite world of possibilities.

Building a General Artificial Intelligence requires you to define the architecture of 
the intelligence with the intrinsic skills, which will be hardcoded by programmers 
into the robot and help solve smaller subproblems, as well as to define the order in 
which new skills will be acquired, the curriculum roadmap that could be taught in a 
School for AI. While gradual learning learns skill incrementally using simpler skills, 
guided learning involves a teacher who has already discovered the skills and will 
teach them to other AI. 
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On natural language translation tasks, smaller networks have been proven to learn 
faster and better from a bigger network, the mentor, which would have learned to 
translate and produce the translations for the smaller network to learn from, rather 
than learning directly from a real set of human translations.

The preceding figure represents GoodAI Roadmap Institute to evaluate the learning 
roadmaps for AI.

Self exploration, communication with the mentor, and incorporation of negative  
and positive feedback are among the ideas toward autonomous intelligence that  
will develop itself, and the current Deep Learning networks open the way toward 
this future.



Chapter 13

[ 269 ]

Among the companies that work toward this goal, it would be worth to quote 
GoodAI, as well as Amazon with its Echo product and the underlying voice control 
assistant technology, Alexa, that has already learned more than 10,000 skills in order 
to help you organize your life. Alexa's knowledge has become so vast that it becomes 
hard to dive deep into it and find its limitations. A test environment for developers 
enables them to insert these skills into intelligence tools of higher level:

Further reading
You can refer to the following articles to learn more:

• An Easy Introduction to CUDA C and C++, https://devblogs.nvidia.com/
parallelforall/easy-introduction-cuda-c-and-c/

• How to Access Global Memory Efficiently in CUDA C/C++ Kernels, https://
devblogs.nvidia.com/parallelforall/how-access-global-memory-
efficiently-cuda-c-kernels/

https://devblogs.nvidia.com/parallelforall/easy-introduction-cuda-c-and-c/
https://devblogs.nvidia.com/parallelforall/easy-introduction-cuda-c-and-c/
https://devblogs.nvidia.com/parallelforall/how-access-global-memory-efficiently-cuda-c-kernels/
https://devblogs.nvidia.com/parallelforall/how-access-global-memory-efficiently-cuda-c-kernels/
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• Using Shared Memory in CUDA C/C++, https://devblogs.nvidia.com/
parallelforall/using-shared-memory-cuda-cc/

• Just another Tensorflow beginner guide (Part4 - Google Cloud ML + GUP + Keras), 
http://liufuyang.github.io/2017/04/02/just-another-tensorflow-
beginner-guide-4.html

• Learning to learn by gradient descent by gradient descent, Marcin 
Andrychowicz, Misha Denil, Sergio Gomez, Matthew W. Hoffman, David 
Pfau, Tom Schaul, Brendan Shillingford, and Nando de Freitas, 2016

• A Framework for Searching for General Artificial Intelligence, Marek Rosa, 
and Jan Feyereisl, The GoodAI Collective, 2016

Summary
This chapter concludes our overview of Deep Learning with Theano.

The first set of extensions of Theano, in Python and C for the CPU and GPU,  
has been exposed here to create new operators for the computation graph.

Conversion of the learned models from one framework to another is not a 
complicated task. Keras, a high-level library presented many times in this book as  
an abstraction on top of the Theano engine, offers a simple way to work with Theano 
and Tensorflow as well as to push the training of models in the Google ML Cloud.

Lastly, all the networks presented in this book are at the base of General Intelligence, 
which can use these first skills, such as vision or language understanding and 
generation, to learn a wider range of skills, still from experiences on real-world  
data or generated data.

https://devblogs.nvidia.com/parallelforall/using-shared-memory-cuda-cc/
https://devblogs.nvidia.com/parallelforall/using-shared-memory-cuda-cc/
http://liufuyang.github.io/2017/04/02/just-another-tensorflow-beginner-guide-4.html
http://liufuyang.github.io/2017/04/02/just-another-tensorflow-beginner-guide-4.html
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