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HIGH TEMPERATURE SERIES TESTS FOR

HELICAL ORDER

by

Sidney Redner

Submitted to the Department of Physics
on May 16, 1977 in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

ABSTRACT

We study, by using high-temperature series, the
properties of a model system which exhibits a tramsition
from ferromagnetic to helical order and a Lifshitz point.
The Hamiltonian is,

A - '—qus.Z‘—__'...S'»‘.i‘é - JQZSLS;, Jz ZS Sy

b,\)

(Zss *RZSS *SZS S )

where the first two sums are over nearest-neighbor spin
pairs in the same and adjacent x-y planes respectively, and
the third sum is over next-nearest-neighbor spin pairs in
the same and adjacent x-y planes respectively, and the

third sum is over next-nearest-neighbor spin pairs along the
z-axis. This model, which we call the R-S5 model, simulates
some of the features of real materials which exhibit helical
order and a Lifshitz point.
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From the two spin correlation function, the series £or
the structure factor 3(1) are calculated for arbitrary q to
order 8, 6, and 5 for Ising, planar, and Heisenberg spins
respectively (n=1, 2, and 3).

In the ferromagnetic phase the susceptibility ($(3=0))
series is expressed as a polynomial in J4,/kT, R, and S. In
this form an important class of the coefficients may be
checked by the application of new rigorous results which
relate derivatives of xy with respect to R and/or S to powers
of the two-~dimensional susceptibility. From the analysis of
the susceptibility series, scaling in the two parameters R
and S is verified, namely that G(3%*T, A%H,\*K, 2sS) 'XG(’C R, $)

where aR=aS=l4/5.
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The Lifshitz point is accurately located by m1n1miz1ng
an approximate form for )(%) that is wvalid for small q,

&%(o,) ’X- [1+q2x /2% + * /oy (6<a/ Y -2y /X ) 4 - - ]

where <z®>=5<sysy>t" 1is the z-moment of the two-spin
correlation function. To this end,high temperature series

for <z®> and <z%> are calculated 1n a general polynomlal form.
From the analysis of this approximate form for B(q) the
boundary between ferromagnetic and helical order is accurately
located. For R=1, the Lifshitz point occurs at S1=-0.271R,
-0.263R, and -0. 259R respectively for n=1 , 2, and 3. 1In
addltion, near the Lifshitz point, the ordered phase wave
vector qO is found from the location of the minimum of

3( )"!, and this gives quV[S/R ~-(s/R.]1B4 where Bq=% *0.1. At
the Lifshitz the coefficient of q2 in J(%)" vanishes and
A?(q) l’baoc%

In the helical phase, the dependence of 30 on R,S, and
temperature is obtained by analyzing the full structure factor
series. From these series the phase diagram can be mapped
out. The structure factor exponent is estimated to be 1.35f
0.05 for n=1, while for n=2 or 3 the series are too short
to give accurate estimates.

The apparent dependence of this exponent on R and S is
studied by comparison with the spherical model (n=»). The
partition function is exactly calculated, and thereby very
lengthy series are gemnerated. By analyzing these series,
it is found that the critical region shrinks drastically
near the Lifshitz point. Furthermore, from this simple fact
we can describe geometrically the full wave-vector and
temperature dependence of the structure factor.

Thesis Supervisor: H. Eugene Stanley, Professor of Physics
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I. BACKGROUND



1. INTRODUCTION

In this section, we present a simple introduction to
various properties of magnetic systems which possess an
ordered phase which is spatially non-uniform. This phase
may be described below the critical temperature, by a
magnetization which varies periodically in the material
with an associated wave vector 30. In certain systems
this wave vector is incommensurate with the lattice
structure, and furthermore, Zo is a continuous function of

relative spin interaction strengths; this form of order is

called helical order.

A feature that gives rise to helical order in certain

systems is the "competing" nature of the interaction between

spins. A typical example is ferromagnetic interactions
competing with antiferromagnetic interactions. Loosely
speaking, a spin doesn't know which way to point when such
competing dinteractions occur. Depending on the relative
strengths of the two types of interactions present, the
spin configuration that minimizes the free energy will be
one that compromises between ferromagnetic and anti-
ferromagnetic order. This compromise is the mechanism
that leads to helical order. 1In this work we shall study
the transition to helical order in a model system with

this type of interaction.
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In order to understand how competing interactions can
give rise to helical order, we first study the order that
arises in a simple system, the spin 1/2 Ising model with
nearest-neighbor interactions. For simplicity we will
always consider models on a simple cubic lattice with unit
spacing between nearest-neighbor sites. Later we will
study a more.general model in which further neighbor
competing interactions are also considered, and we will

show that this system can possess a helically ordered phase.

The spin 1/2 Ising model in zero field is defined by the

Hamiltonian,

7{"3—25;53

“) (1.1)
where each s; < + 1. The sum is over nearest-neighbor
pairs only. The ordered state at T=0'K is the one that

minimizes the energy. Because the Hamiltonian (1.1) is so
simple we find by inspection that the energy minimum occurs
if each product Sisj=+1 for J>0 (ferromagmetic interaction).
This means that in the ordered phase, all the spins are

aligned as shown in figure 1.1.

Now consider the ordered phase for the case J<0O,which
is the Ising antiferromagnet. For this system, the energy
is minimized by a spin configuration in which each pair

s sj=—l. Consequently, in the ordered phase the spin

i

direction reverses on alternate nearest-neighbor sites as
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shown in figure 1.2.

For the ferromagnet the order parameter is the spin
expectation value, the magnetization per spin; in
dimensionless units m-%SL/N where N is the number of
spins in the s&stem. As the temperature is decreased,
starting from the critical temperature Tc’ m grows rapidly
and approaches 1 as £+0 (cf. fig. 1.3). On the o;her hand,
the staggered magnetization per spin is the order parameter
=2‘.("1)‘S;/N , and this

quantity reflects the symmetry of the ordered phase. Below

for the antiferromagnet, mStaggered
Tc is plays the same role as the magnetization per spin of

the ferromagnet.

We can also think of this staggered magnetization as
the difference between the magnetization on a sﬁblattice
made up of only A - sites, and the B-site sublattice
magnetization (cf Ffig. 1.2). This is one example of
commensurate ordering, in which the order parameter can be
expréssed as a linear combination of a finite number of

sublattice magnetizations.

Commensurate ordering can equivalently be described by
a spin wave in which the magnitude of the associated wave
vector is determined by the lattice spacings. For the
antiferromagnet, spins on successive planes perpendicular to
any body diagonal (the 1,1,1) axis say), all point in the

same direction as shown in figure 1.2. This order can be
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characterized by a plane spin wave of wavelength A=2//§ and
wavevector§°an(%1g). With this method of describing the
order, it is simple to generalize to the case of a wave
vector which is incommensurate with the lattice. For this
case, a sublattice picture is not useful because an
infinite number of sublattices are required to describe the

order parameter.

Let us now generalize the interactions to allow for

dire ctional anisotropy. Consider the following Hamiltonian,

;){: - Jx./tﬁi SLSS - J’t 2 S..SJ

(% ) (1.2a)

) Jx% (2&85 T RZ SLS‘S)‘

53

tn

(1.2b)

The sums are over nearest-neighbor pairs in the same

and adjacent x~-y planes respectively. In what follows we
shall always consider the case ny>0. The order that occurs
below Tc depends now on the sign of R. For R positive the
energy will be minimized when each Sisj=+l' However, when

R is negative, the configuration in which Sisj=+1 for
nearest-neighbor pairs in the same x-y plane and Sisj=_l for
nearest-neighbor pairs in adjacent x-y planes,minimizes the
energy. For R>0 we have spatially uniform order, the

ferromagnet, while for R<0 the ordered phase consists of
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alternating planes of aligned spins, the metamagnet. In
the latter case we can describe the ordered phase by a
plane spin wave of wavelength A=2 and wavevector
.q;‘W(0,0,D. In figure 1.4 we show the ordered phases

that occur for a system modeled by the Hamiltonian (1.2).

In the previous examples we considered systems which
exhibit commensurate order below Tc' By this, we mean that
the periodicity of the order is determined by the lattice
spacing. 1In these cases, minimizing the energy is quite
simple and often may be performed by inspection. When
further-neighbor interactions which can compete with the
nearest-neighbor interactions are also .considered, we will
see that mere inspection no longer suffices to determine

the ordered phase. For example consider the following

Hamiltonian,
/3
a
%- B J‘x%gs Sy J}Z Sisy - Z S»Sd
R N (1.3a)

J (ZSLS +P\ZSJ *SZ Sgs,)

L4

(1.3b)
The third term represents an interaction between next-
nearest-neighbor spin pairs along the z-axis only. ' Figure

1.5 shows the interactions included in this Hamiltonian. We
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will see that the values of the parameters R and S determine
the ordered phases for this system. For this reason, we
call the model Hamiltonian (1.3) the R-S model. Our study

of helical order will be based on the study of this system.

To determine the ordered phase that occurs in the R-S
model as S varies, focus attention on three colinear spins
in the z-direction, and consider the case R>0 (cf. fig. 1.6).
A positive S interaction only enhances the existing nearest-
neighbor interactions, and therefore the ordered phase
remains ferromagnetic. However suppose that S is negative,
and consider the case in which both spin 1 and 2 are pointing
up (cf. fig. 1.6). The R interactions tends to align
spin 3, but the S interaction has the opposite effect. For
a sufficiently negative S, the energy minimum occurs for
neither ferromagnetic nor antiferromagnetic order, and in
fact the order that does occur will represent some sort of
compromise. For such a phase the energy minimization pro-
cedure is quite difficult. Our expectation is that the
ordered phase will be helical, and in the next section we
will give evidence for this by treating the R-S model in a
mean-field approximation. Furthermore, from this treatment
we will be able to elucidate the important features of the

helically ordered phase.
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2. MEAN-FIELD THEORY

In order to easily understand the various physical
features of the R-S model, it is natural to apply the mean
field approximation. Calculations in this theory are quite
simple, and provide a reasonable qualitative description
of the physics. Only certain features of the model have
been previously treated in mean field theory, and therefore
we shall present a comprehensive study of the physical
properties of the R-S model. Two especially useful
references that are of some use are the books of Brout

(1965) and Smart (1966).

We are first interested in determining the ordered
phases that occur below Tc' This is accomplished
by minimizing the energy of the system. In order to proceed,
we are guided by the fact that the interactions R and S
are competing only along the z-axis, and therefore the
ordered phase wave vector ao also points along the z-axis.
Thus, for the expectation value of a spin located at
; = (x,y,2) we write,

<(sp) =<K S cos(q,-?) XS WLILIN
(2.1)

where S, is the spin at the origin. The energy of s, can
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be written as (cf. fig. 2.1),

Y © 3
E° : -Jx (Z SoS. * RZ SoSy + 32 SoSi.)
B iy 73 i3
(2.2)

In the mean field approximation each sy is replaced by

its expectation value, and from (2.1) we obtain

A 2
E.: 'J',,\a (4+2Rcosq + ZSces2q,)<So)Q s -3 (q)<se)
(2.3)
where 3(q) is the Fourier transform of the exchange inter-

actions. We find the energy minimum by differentiating

with respect to q

an/3%=" ZRS;nct - L‘Ssb\lq’ o0

or

Q,RSM% t 85$mq, cosq, * O

(2.4)

This equation has three solutions corresponding to three

types of possible order:
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l) qo:O s E:} * -JI%(L\' *IR + 2-5)<So>z 'cef"‘on'(\osne§{b
R>»e

E:‘-) T~ Jm\s(l'\"lR ‘\’13)<S°>1 quf‘\.‘(“ewoma%nc:\(c. (')..5)

2)a,= W
1 (R<o)

Y

. {
3)%.,’(.0&4 k‘\R\MS\) ) E :):" Sp\s (qil\g\cos%* Q,Scos’lo?)< So»z
--- helical

3 {
The third type of order occurs when Eo( )< Eo(z))E: x
and we find that this occurs when S<-|R|/4. This condition

marks the boundary between commensurate order, either ferro-
magnetic or antiferromagnetic, and non-commensurate order,
either helical or metahelical (cf. fig. 2.2). 1In the helical
phase q_, is a continuous function of R and S and qo-»O at the
phase boundary. TFigure 2.2 is a schematic phase diagram
showing the four ordered phases and the phase boundary, which

we will refer to as the Lifshitz boundary.

The critical temperature at any point in the R-S plane
is found by considering the mean field expression for <s_>.

In a mean field approximation we have for spin %,

<5y tanh (BT = donn LB IR 4 $(4)<50))]

(2.6)
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t and H:f are the external and mean-fields at the

ex
where H

o}
origin respectively. In the absence of the external field,
a non-zero <s > first occurs, as the temperature 1is

A
decreased, when the slope of tanh (BJ (q)<s,>) is greater

than <s5,>. From this we find the critical temperature,

A
BCJ(q)=1 (2.7)

This may be written as ch=ny (4+2|R|+ 2S) for commensurate

order, and ch=ny (4+2|R|cosq + 25 cos 2q) = ny(4—R2/4 S-28)

for incommensurate order. From these formulae the critical

surface can be described. For the commensurately ordered

phases, lines of constant TC have slopes of 45° with

respect to the R or S axes, and these lines form part of

a diamond-shaped figure about the origin (cf. fig. 2.3a).

Therefore the critical surface consists of two planar

sections, each one inclined upward with respect to the R-S

plane by an angle or tan-lfg. In the incommensurate phases,

'I‘C first decreases for fixed R and decreasing S beyond the

Lifshitz point. When S = -R/7/8, T, is a minimum, and the

critical line for fixed R and varying S has a broad trough ‘

about this point. (cf. fig. 2.3b) For still more negative

S, TC rises again and as S+»» the increase becomes linear

and the critical surface tends to a plane inclined upward

1

the respect to the R-S plane by an angle of tan 2. All

these features are sketched in figure 2.3.
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Finally, we study the nature of the phase transition
as T+T:. Below Tc’ either the uniform, staggered, or
helical magnetization becomes non-zero,and at Tc the
response of these magnetizations with respect to their
conjugate fields diverge. When a uniform magnetization
occursy the response function of interest is OM/9H, which
is just the direct susceptibility. We are interested in

N
the response of the helical magnetization M (of character-
istic wave vector qo) with respect to its conjugate field
ﬁ, and this response function is called the structure

factor é(qo). To derive an expression for this quantity,

consider first the helical magnetization below Tc'

X - (};<s;> cos qo2 )/ N

. (Z‘ Yanh [ B(H?: + H?t)] cosc‘.i)/N

xt
e 3 (BIQ)<s> +RHT ) cosqer /N
Ll (2.8)

We rewrite this in the form

(Z<5?>L1’ﬁ3(%)] s % ﬁH;xt) cosqet

(2.9)

and if Hg varies periodically in 2 with wave vector q,>

then we have,
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~ ~N

-4
M=H(kT-3())

(2.10)

and this proportionality constant is the structure factor.

3(q)  (KT-3e) = (k(T-TDY

(2.11)

This first form is especially useful because it displays
the relative strengths of magnetization fluctuations of
different wave-lengths, and from this we can understand
the onset of helical order as follows. By approximating

J(qiifor small q we have,

»&(ﬁ,}.t‘ kT-S(ot) > \nT'Sg.a(‘%t'l\R'\coSc" + LS cos').%)
Z\T - Tun (442101425~ 42 (R14S) 491 (IR1+163))

e - - a2 IRI4US 4 [RI1AGS
kT S‘%L“’QR\QS)U Y Nrmies *9 JTFLTVTES ]

AT ATl L1 - qriRUAS | qu IRltles

Y + 2IRI4LS 4 42IR142S
* T-Tlo) o g2 IRIMS | gu 1RBIGS
Telo) L} 2IRIS ¥ +2IR142S

(2.12)
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where TC(O) is the critical temperature of the q=0
fluctuations. When$>-|R|/4 the coefficient of g2 in
(2.12) is positive, and a minimum of.x_l(q) occurs at
q=0 (cf. Fig. 2.4). This corresponds to the fact that
at any T>Tc,the largest fluctuations are for q=0, and
as T+Tc+ these fluctuations diverge, while fluctuations

for q# 0 remain finite (cf. fig. 2.5).

However, when S<—lR[/4, the coefficient of q2 in
( 2.12) is now negative and a minimum of.é—lfq) occurs
at non-zero q. An approximate expression for qg may be
found by minimizing.ﬁ(a) with respect to q, and this
gives,

qe = - G (IRI44S)/(1RY +16S)
(2.13)

This expression agrees with qo=cos—1(—lR|/4S) to lowest
order in 1 + |R[/4S. As T>T_, S(qo) diverges, and

fluctuations for all q#qo remain finite (cf. fig. 2.5).

The onset of helical order occurs when |R|+ 4S = 0,
and here the coefficient of q2 in (2.12) vanishes. This
condition marks the transition point between the dominance
of finite wavelength and zero wavelength fluctuations, and
therefore the transition can be regarded as an instability
in Fourier space. At this instability, fluctuations of

small non-zero wavevector are as important as zero wavelength
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fluctuations for T>TC, and the structure factor is no
longer Lorentzian (cf. fig. 2.6). Hence one might
expect that the critical behavior of a system at such an
instability is markedly different than the usual critical
behavior, and this is found to be the case (Hormreich et

al 1975).

Physically, the condition |R|+4S=0 marks the point
at which the competing influences of the R and S inter=
actions just balance. When this occurs, spin correlations
in the z-direction are drastically reduced (cf. fig. 2.7)

and consequently the nature of the phase transition changes.

Our mean field study has shown the importance of
understanding the gq-dependence of the structure factor. In
later sections we will study the structure factor by
high-temperature series, and this will be the major focus

of our work.
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Figure Captions
Figure 2.1 The eight spins that interact with the spin
at the origin, So . These include six nearest
neighbors,st-sb , and two next-nearest
neighbors along the z-axis S3-5, .
Figure 2.2 The four ordered phases that occur in the
"R-S model. The metahelical phase is obtained
from the helical phase by reversing the
direction of all the spins on alternate
Planes.
Figure 2.3
(a) A schematic map of the mean-field phase
diagram for the R-S model. Shown dotted
are contours of constant Tc.
(b) A typical critical line for fixed R = 1
and varying S. Shown is T;=TC(R=1,S)/TC(R=1,S=0)
versus S. The arrows mark the Lifshitz point,
and the bottom of the "trough". Note the
exaggerated vertical scale.

Figure 2.4 The inverse structure factor‘g(q)-l for

fixed T >Tc. The minimum of .8((1)-.1 deter-

mines the ordered phase wave vector q,-

This may be found by minimizing the approximate
. -1

expression for ,8(q) shown in the figure.

Figure 2.5 As T ~»TC+, the inverse structure factor

minimum touches the gq-axis, and this corres-



Figure 2.6

Figure 2.7
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ponds to a divergence of the structure factor.
The q dependence of the structure factor for
T >Tc. At the Lifshitz point, the coeffi-
cient of qzin (2.12) vanishes and the peak
is no longer Lorentzian. Note that even in
the helical phase the peak is a Lorentzian
centered about q,-

The size of a "correlated region'" of spins.
When S=0, the interactions are isotropic,
and the "correlated region" is a sphere of
radius § , the correlation range. When

S = -1R|/4, the correlation range in the
z-direction varies as the square root of

the correlation range in the x-y plane.
Consequently, the shape of the '"correlated
region" is quantitatively different than in

the case of isotropic interactions.
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3. PAST AND PRESENT WORK 3R

A. PAST WORK

The existence of helical order was first proposed by Kaplan(1959),
Villain (1959) and Yoshimori (1959) (cf fig. 3.1). By using mean field
theory, it was shown that a helically-ordered phase is energetically
favored over a ferromagnetic phase in model systems which include
further neighbor competing interactions. This type of interaction has
as its phenomenological basis the RKKY interaction (Kittel and Ruderman
1954, Kasuya 1957, Yosida 1957) in which a coupling between 4f valence
electrons and conduction electrons gives rise to an effective exchange
between ionic spins at sites i and j proportional to (xcosx-sinx)/x*
where X-=\?i - ?J\ .

The pioneering work of 1959 gave impetus to a large number of theoreti-
cal studies using mean field theory. The primary focus of attention was
the classification of the various types of helical order. Some of the
major contributions were the works of Herpin et al (1960), Kaplan (1961),
Kaplan et al (1961), Miwa and Yosida (1961), Enz (1961), Nagamiya (1962),
Yosida and Watabe (1962). Elliott (1961) originally introduced the
R-S modei in order to explain certain features experimental measurements

on the helical phase for erbium.

The first experimental observation of helical order occurred sometime
prior to 1959. However, in the absence of a theoretical understanding, the
early experiments were not properly interpreted. Helical order appears to
have been discovered first by Erikson (1952), in neutron diffraction

measurements of MnOz. His interpretation of the data suggested an
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ordered phase consisting of two uncorrelated, intercalating antiferro-
magnets, and it was Yoshimori (1959) who first interpreted the data
correctly and proposed a screw-type structure for the ordered phase. 1In
hindsight, both the experiments of Behrendt et al (1954), and Herpin (1956)
were clues indicating that helical order was occurring in the materials
studied, but both these clues were ignored.

After the theoretical breakthroughs of the early 60's, considerable
interest arose in studying the magnetic structures of the rare earths,
which possess an unfilled 4f shell. Within several years, a wealth of
helical spin structures was discovered. Examples include erbium
(Cable et al 1965), thulium (Koehler et al 1965, Brun and Lander 1969),
neodymium (Moon et al 1964, Lebech and Rainford 1971), praseodymium
(Cable et al 1964), dysprosium (Wilkinson et al 1961), europium (Nereson
et .al 1964), holmium (Koehler et al 1966, 1967), and terbium (Koehler et
al 1963, Dietreich and Als-Nielsen 1967, Brun and Lander 1971). Much
of the relevant experimental data from this time is summarized in the
reviews of Koehler (1965) and Cox (1972).

After 1965 approximately, research in the field diminished as a
fairly exhaustive theoretical and experimental survey of magnetic struc-
tures was complete. Recently, it was pointed out by Hornreich et al
(1975 a,b), that new interesting critical behavior can occur at the
transition between ferromagnetic and helical order. Physically, this
feature arises from a q=space instability in the spectrum of the struc-
ture factor (see also section 2). By using the renormalization group,
it was shown that at this transition point, termed the Lifshitz point, the

exponents belong to a different universality class than the exponents



which characterize the ferromagnetic or helical phases. This situation
is analagous to tricritical behavior in metamagnets (Harbus and Stanley
1973), in which a firét order and second order line meet at a tricritical
point (cf fig. 3.2). The theory of the Lifshitz point was extended by
Nicoll et al (1976a,b,1977), in which exponents were calculated at more
general classes of Lifshitz points.

The theoretical studies indicate that it will be very interesting
to experimentally study materials in which a Lifshitz ‘point occurs.
Such a material UAsl_x Sx’ has been found by Lander et al (1972). Here
x appears to play the role of a competing interaction in the R-S
model. .As x varies the system can change from antiferromagnetic to
helical and then to ferromagnetic order, and the phase diagram is
qualitatively similar to that of the R-S model (cf fig. 3.3). However,
there was no existing theoretical work to guide the experiment, and
consequently the interesting features near the Lifshitz point were not
studied.

In the past year, a more promising avenue of study has opened up
in liquid crystals. Theoretical work by Chen and Lubensky (1976), Chu
and Macmillan (1977) and Michelson et al (1977) indicates that Lifshitz
points can be attained in liquid crystals (cf fig 3.4), while the
recent experiments of Johnson et al (1977) appear to confirm this idea.
The 1liquid crystal work is quite sparse, and much work remains to be done.
These recent developments have spurred renewed theoretical interest in
model systems in which a Lifshitz point and a helical phase can occur.
The R-S model is a straight-forward and concrete example of such a
system, and consequently it has been the focus on some recent work.

The exponents of the helical phase have been calculated by Droz and
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Coutinho-Filho (1975), Garel (1975%,land Garel and Pfeuty (1976) in an
€-expansion. It is found that if the exponents in the ferromagnetic
phase are those of n-component spins, then the exponents in the helical
phase are those of 2n~component spins. Physically, this originates from
the fact that in the helical phase, fluctuation of both i:al diverge
at the critical point, and if HZ is incommensurate, than 43; and
:;; cannot be connected by reciprocal lattice vectors. That is, each spin
component effectivély has two independent critically fluctuating parts,
resulting in 2n-vector exponents. In addition, the details of the phase
diagram have been studied in the n=oo limit of the R-S model by Hornreich
et al (1977).

These studies are limited in scope however, because certain important
features such as the properties of the ordered phase wave vector EZ,
and the location of the Lifshitz point are either assumed to be mean-field
like for finite n, or are actually mean-field for n=w. This motivates
our series calculations, in which a comprehensive numerical study of the

R-S model can be made.



B. PRESENT WORK

This thesis is organized as follows: In section 4
we begin with an introduction to the series analysis
techniques used in our work. We pay particular attention
to understanding the influences which affect the order-
by-order trends in series extrapolations. This understanding
proves to be crucial when analyzing R-S model series. In
section 5 we illustrate and test our analysis methods on
the anisotropic three-dimensional Ising model. This system
crosses over from two to three dimensional ordering as T
decreases and approaches Tc’ and this crossover can be
made evident in the order~by-order trends in series
extrapolations only by applying the methods outlined in
section 4. We present our central results in the next
three sections. In section 6, the details of the series
generation procedure, some new rigorous results which
verify certain of the series coefficients, and the analysis
of the susceptibility series in the ferromagnetic phase
are discussed. Then in section 7 and 8, we study the
properties of the R-S model near the Lifshitz point, and
in the helical phase. We map out the phase diagram,
accurately locate the Lifshitz point, study the dependence
of q  on R,S,and T,and estimate the exponents. in the helical

phase. These exponents appear to vary continuously with
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R and S, and this variation is most pronounced near the
Lifshitz point. This apparent violation of universality
is a problem which is addressed in section 9, where we
argue that the critical region shrinks drastically near
the Lifshitz point. As a test, in section 10, we
compute the partition function for the n== R-S model for
arbitrary dimensionality. From this, we can show that
asymptotic series behavior near the Lifshitz point does
not become evident until an exceedingly large number of
series coefficients are calculated. Finally, we
summarize our major results in section 11, and conclude

with some suggestions for future work.
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Figure Captions
Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

4/
Summary of past and present work on helical order.
Comparison of the phase diagram for a tricritical
system, and a system exhibiting a Lifshitz point.
The exponents at the tricritical point or at the
Lifshitz point are different than the exponents along
the second order lines. At this point three phases
become identical.
Comparison of the phase diagrams for the R-S
model, and for the material UAs, S« , which was
studies experimentally by Lander et al (1972). The
notation meta' refers to a phase in which successive
x-y planes are ordered as ++--++--. TFor the R-S
model, we show a slice of R-S-T space in which S
is fixed at some negative value.
The liquid crystal phase diagram proposed by Chen
and Lubensky (1976), and Chu and MacMillan(1977).
The Lifshitz point occurs at the confluence of the

nematic, smectic—A, and smectic-C phases.
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II. METHODS



4. SERIES ANALYSIS

In this section we consider some of the techniques used
to extract information about the critical behavior of a
system from the knowledge of a finite number of terms in a
high-~temperature series expansion of various thermodynamic

functions.

A high-temperature series is a power series of the

form,

LT

K () = % C\x/tkT)l %: 02;32,

(4.1)
and it is often more useful to view the series as an expansion
for small B. Where no confusion can arise, we shall refer

to B as a "temperature'". Here K(B) is the notation we shall
use for the series representation of a generic thermodynamic
function A(B). The first L terms in the series representation
X, accurately represents A for the temperature range
0<@<ﬁc~$L, where 6L depends on L (cf. fig. 4.1). As more
terms for A are calculated, the temperature range of accuracy
for the series increases and therefore SL decreases.

However, at the critical point, the truncated series remains

finite while a typical thermodynamic function exhibits a

singularity of the form.
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AR = (1- B/B.Y " al®)
4 \egg s;\nﬁu\aw “'cPW\S as ﬁ""’ﬁ:

(4.2)
where a(B) is an analytic function at Bc' Here, the less
singular parts may be confluent with the singularity at BC.
The critical region may be defined as the temperature region
in which the contribution of the less singular terms in A(B)

become negligible, and in this region A(B) varies simply as

o () ~ (138 o)
(4.3)

Our goal is to understand the singulatity A(BC) from

its finite series representation. Since it is often the case

that the series coefficients in X grow in a regular pattern

% increases, it is tempting to guess the remaining

infinite number of terms in A based on this pattern, so that

we may extrapolate the series to the critical temperature.

Once we have guessed these remaining terms, then the critical

temperature BC and exponent A may be found by a variety of

methods. Series analysis embodies this guessing procedure,

and the subseguent techniques for finding BC and A (for

reviews see Gaunt and Guttmann 1974, Hunter and Baker 1973,

Baker and Hunter 1973).
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While there are few rigorous results concerning the
usage of series analysis, these techniques have gained wide
acceptance. This is due, in part, to the excellent agree-
ment of the results of series analysis with the results
found from systems for which an exact solution exists (see
for example Domb and Sykes 1957, Milo%evié and Stanley 1971).
Furthermore, in studying model systems for which no exact
sciution exists, analysis of series consisting of L terms
yields estiamtes for the critical point and exponent which
appear to converge rapidly to a limit as L increases (e.g.
Rushbrooke and Wood 1958, Sykes and Essam 1964, and Betts
et al 1970). Because of these reasons, series analysis 1is

now accepted as an accurate tool in studying critical behavior.

Series analysis is often applied to systems in which
there is only a single critical point of a simple type
in which an ordered and disordered phase become identical.
In this case, the less singular terms in A(B) are small,
and the amplitude function is singularity free for a large
range of 8; hence the asymptotic form for A(B) is dominated
by A'singular (B). Analysis of series for these systems
is straightforward, and quite accurate results may be
obtained. However we will study systems in which there
exist competing interactions, so that different types of

ordered phases may exist as the relative strengths of the
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interactions are varied. We will see that this may lead

to a crossover between different types of critical behavior
as the temperature varies and approaches B (Harbus and
Stanley 1973). This crossover should be manifest in series
analysis as follows. Because progressively lengthier series
probe progressively closer to Bc, analysis of relatively
short series should yield one set of estimates for the
critical point and exponent, while analysis of more lengthy
series should yield a different set of estimates. That is,
one type of critical behavior is evident from analyzing

low order series, while a trend to the true asymptotic
behavior does not appear until very high order as shown

in figure 4.2. It is the study of these trends that we

are concerned with in this work.

When crossover occurs, corrections to A gipgular (8)
may be substantial even quite close to Bc' These corrections,
may appear in the series representation as apparent
singularities at temperatures not equal to Bc. In the
presence of such corrections, the true asymptotic behavior
of a system may be hidden. That is, the apparent singularities
have a substantial influence on the order-by-order trends
in series estimates. Therefore, in order to study the
order-by-order trends associated with the physical singularity

only, it is first necessary to minimize the effect of
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these "non-physical" singularities on the analysis of X(ﬁ)
(Baker 1965, Guttman 1964). This can be accomplished by the
complementary use of the ratio and Padé methods as indi-
cated in figure 4.3. We now turn to a study of these methods.
/
(a) PADE METHOD

The [N,D] Pade approximant (Padé 1892) is defined as

the polynomial in /3,

P[N)D}(ﬁ’) 35;&(3&'/(11-2&%1[31) (4.4)

This function is used to model the series representation for
A(ﬁ) as follows. If L terms for K(ﬁ) are known, then for
each [N,D] pair such that N+D £ L,we require that the series

representation for P (ﬁ) and A(ﬁ) are identical up to

N, D)
order L. In practice one is interested only in the roots
and residues of the Padé approximant for each [N,D] Pair.
This information is usually displayed in a triangular array,
called a Padé table. Each array entry corresponds to one

[N,D] pair.

If X(ﬂ) extrapolates to a singularity of the form (l—ﬂﬂﬁfx,
then one might expect that some of this singularity informa-
tion will appear in the Padé table (1970) . It is a mystery
why Padé approximants work so sell, and rigorous results about
convergence of the approximants as[N,Dlnaco exist only for
certain restricted forms of A(p). However, Pade analysis has
proven to be an extremely useful tool for giving accurate

information about critical points (Baker 1961, 1965, 1970).

This is the basis for its use and acceptance.
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In what follows, we assume that the less singular parts
of A(pP) may be neglected, and that A singular (p) is of
the form.

Sw\h\.\”(ﬁ) TT (1 (5//3’ )

(4.5)

where b(f) is analytic for allf, and the subscript 1 will
refer to the physical singularity in what follows. Padé
approximants are not usually applied to X(ﬁ) directly for
the following reason. If the Ai are non-integral (branch-
point singularities), as is usually the case, then only an
infinite series representation can accurately describe such
a singularity. However for integral ai (poles), a finite
order denominator in a Padé approximant can exactly describe
such a pole. Thus it isuseful to tranmsform X (B) so that
the presupposed branch points are converted into simple

poles. One such method is the following transformation on

(4.5)
L

B(ﬁ) - 5% \n{-p’&;\s\,\an (ﬁ)] * Z {2‘.{' + “°“'$;V\3-\q» terms

— BB
v (4.6)

The function A(B) has been converted into a product of
simple poles, and the Padé approximants to B(A) can now
accurately pick out each singularity and its residue,
independent of its location. This technique is usually the

first method applied to a series in order to obtainm a rough
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map of the singularity structure evident in a series. When
such a map is obtained, one can then proceed with further

analysis appropriate to the singularity structure at hand.

A more accurate estimate of ﬁc may be obtained by a
Padé analysis of the following function (Baker 1961,

Gaunt and Guttman 1974),

1
Cle) - TR ™

(4.7)
where Al is either known exactly, or there exists an accurate
estimate for Al' The singularity structure of C(B) is
of the form,

1/ -4 L "Al/a .
C(%) : G(ﬁ) Ai (1‘ ﬁ/Bi) {?2.( 3' {3 lﬁn) t + \QSS Slmbu\an ":ermsj

(4.8)

This transformation picks out the physical singularity,
and poor convergence of Padé approximants to the other
singularities occurs. In practice various approximants to

C(B) give strikingly consistent results for the physical
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singularity, and /31 may be determined quite accurately.
Furthermore, a reasonable estimate for /31 may be obtained
by examining Pade tables for [A(ﬁff/aifor a range of 21
values. The ﬁl value for which the Padé table is most
consistent can then be interpreted as the exponent of the
physical singularity.

For our purposes,Padé approximants are useful in mapping
out the singularity structure evident in a series. With
this map one can then devise transformations which isolate
the physical singularity. When this is accomplished, the
series coefficients are found to behave quite regularly and
are now amenable to analysis by the ratio method.

b) RATIO METHOD

As stated earlier, in problems involving crossover one
type of critical behavior is evident at high temperatures,
but as the temperature 1s reduced to near the critical tem-
perature, a "crossover" to another type of critical behavior
occurs. Progressively higher order series prove progressive-
ly closer to ﬂc and therefore the order-by order trends in
the series coefficients will reflect this "crossover (cf. fig.
4L.2). Ratio methods perform an order-by-order extrapolation
of series coeffigients, and are therefore ideally suited to
study such "crossover" effects.

The ratio method in its simplest form is used to analyze

A

functions whose asymptotic behavior is of the form (l-pﬁgc)_
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(Domb and Sykes 1957 , 1961). The £°P

coefficient ay in

the series representation for (1—[5/[5,'59‘ is '}.(lﬁx)---"(()+9.~\)/ﬁ39_!
and the Rth successive ratio P25°L/°L4 c[ 14&’1)/1] ﬁg-i

A plot off& versus 1/ is a sequence of points which lie on
a straight line of slope (ﬁ—l)/ﬁC and interceptiﬁc-l. Thus

the geometric features of the ratio plot locates the critical

point and exponent (cf. fig. 4.4).

We wish to analyze thermodynamic functions which near
the critical point behave as
-q o0 Y
A(R)=(1- B/B.) olp)+b(p)= > cy B
X=o (4.9)
where a(@) and b(ﬁ) are analytic functions within the disc
]ﬁ} 4 @c in the complex ﬁ—plane, but may be singular outside
this disc. The ratio method picks out and analyzes only
the singularity nearest the origin in the complex 3- plane,
which in this case is the singularity at ﬁc' As the critical
temperature is approached, the influence of a(p) and b (3)
on series extrapolation decreases. This fact is quantified
by the results of the Darboux theorem which states that
the difference between the ay and cyp is of order 1/ 4

(Darboux 1878). Thus a plot of the ratios cy /c versus

-1
1/8% yields a sequence of points which lie on a curve that

tends to a straight line as L£-eo (c¥$%.th%). This "straightening'

of the ratio plot is a necessary but not sufficient condition
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that the asymptotic behavior of a series asf3~4ﬁ:is (1-ﬁ/PC) .

At each order Q,, we can form the sequence of estimates
for ﬁ;i,ﬁiiilifl'ufiy%bﬂ which is the intercept of the line
drawn through ﬂza“dP;:1When plotted againstl/f. TFurthermore,
the slope of this line at each order is given by the sequence
()X—I)Aﬁl which defines the sequence of exponent estimates
Ag=1- L{1-Pype)  (cf. fig. 4.5).

We wish to understand the influence of singularities
at ﬁ#/BC in determing the trends in the sequences Al or ﬁl
as a function of 1/§ . From this we can get a feeling for
the rate at which asymptotic behavior is approached. This
rate may be reduced considerably when a(P) or b(F) is
singular outside the disclplé ﬁc, as is often the case. When
this occurs the order 1/) corrections of the Darboux theorem
may have a large amplitude, and a plot of the sequences Alor
ﬁﬁ will exhibit a large curvature, which may be opposite
to the curvature found when plotting the Axandfilfor the case
when a(ﬂ) and b(P) are singularity free. We shall see that
this effect can hide the true <crossover behavior of a system
with competing interactions. To understand the size of
this effect, we study by the ratio method two model func-
tions whose singularity structure is identical to the
singularity structure found in many thermodynamic functions.
We will see that the correct trends in the sequences Alor ﬁk

are evident only when transformations which isolate
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the physical singularity are performed.
i) ANTIFERROMAGNETIC SINGULARITY

Consider first the following function and its series
representation
-’A P oo i
(1-8/8) (14B/Ba) =2 ayBt wheee Beipado
TS ("’.10)
We consider this form because it models the typical singularity
structure found in thermodynamic functions on a loose packed
lattice. The singularities at Bcand —pAF represent the
ferromagnetic and so-called antiferromagnetic (Domb and
Sykes 1957, Sykes and Fisher 1962) singularities respectively.
The singularity at -ﬁﬂ,, which is usually much weaker than
the ferromagnetic singularity, has the following effect on

ratio extrapolations.

For BQ<BA,,the ferromagnetic singularity is nearest the
origin, and plots of the successive ratios c‘xnlmi_1 versus {/f show
oscillations which damp out as l increases (cf. fig. 4.6a). On
the other hand when ﬁN=< ﬁcthe ratio method eventually analyzes
the singularity at-—ﬁA,, and this means that the successive
ratios all become negative at some order. From the figure
we see that the oscillations in the ratio plot grow imitially,
and the envelope curve defined by the oscilliations appears
to diverge. Note that the average of the ratios at low
order gives a reasonable estimate for ﬁc, while the trend to

ﬁAFdoes not occur until higher order. 1In this case the
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influence of the more distant, stronger singularity at ﬁc,
on extrapolations for the singularity at —'BAF is quite large,

and persists to high order.

In real systems, both the cases ﬁc‘pAF and ﬂAF<ﬁc occur.
To extrapolate series with such a singularity structure, it
is tempting to "average'" the oscillations in the ratio plots.
However, this can give quite misleading results (cf. fig. 4.6b).
For this reason, an alternative method of smoothing the ratios
is called for, and in the following section we deal with

this problem.

ii) BILINEAR TRANSFORMATION

As we have discussed, the "antiferromagnetic" oscilla-
tions in the successive ratios can be a major hinderance in
inferring the co rect trends in the Rl' The following trans-
formation on the series representation

B - B/(iw‘ﬁ/gz)

(4.11)
smooths the ratios, because themantiferromagnetic"
singularity is actually removed (cf. fig. 4.7). If a series
originally shows singularities (by a Pade analysis) at Bi
and —ﬁz, then after the transformation -ﬁz is transformed

to ~oo while ﬁl is transformed to B,/({+B4/B,) . A new
spurious singularity is introduced at Fsp=+52>pl which is

related to the singularity at 40 in the original series,

and in the next section we will study the influence of this



new singularity on ratio extrapolations.

Often we havg only a reasonable estimate for PZ' In
this case the original singularity at _PZ transformed to a
finite, but more distant location from the origin. Due to
the weakness of the antiferromagnetic singularity in most
systems we find that ratios are smoothed when bilinearly
transforming a series for a large range of ﬁz values about
the correct value (cf. fig. 4.8). Thus after the bilinear
transformation the ratios are smoothed, and trends can now
be seen easily. This is shown in figure 4.8 where we show
ratio plots of the series resulting from a bilinear trans-
formation of the series (4.10). However, we now expect,
based on the Darboux theorem, that the influence of the
spurious singularity on ratio trends 1is quite large. This

problem is treated in the following section.
iii) SPURIOUS SINGULARITY

The second model series we study is of the following
form,
-2 7
(1-8/8y) "(1-BIB.) alp)

(4.12)
where ﬁl<32. This series has the singularity structure that
is typically found after bilinearly transforming a series
containing both the physical and antiferromagnetic singulari-

ties. We will see that the order 1/ corrections in the ratio
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plots due to the influence of the singularity at‘ﬁz can
give rise to trends opposite to the trends found when analyz-
ing the series without the spurious singularity present.

To see this effect, we compare the successive ratio
estimates for the exponent found by analyzing series for
the functions f(ﬁ) = (%#%3)5/4 and ftrue(ﬁ) = (l—ﬁ)_sla
(cf. fig. 4.9). Here f(ﬁ) represents a thermodynamic func-
tion possessing both a physical singularity at}3= 1, and a
spurious singularity atﬁ3= 2, while ftrue represents the
same function without the spurious singularity. From analyz-
ing £°7U°(B), we find that each Air“% 1.25, while from f£(B),
the AQ form an increasing sequence of numbers that smoothly
extrapolates to 1.25. Evidently, the influence of the
additional spurious singularity is not major for the model
thermodynamic function ftrue(P). However, now consider a

more realistic form for ftrue. Suppose ft

-5/4

rue

(P) is of the
form a(F)x(l-ﬁD where a(ﬁ) may be singular for/32 1.

This form provides a more realistic test of the influence

of the spurious singularity. Thus, we analyze the
-5/4
. ' 1-p/2 t -5/4
functions f'(@) =(—T§%r) xa(B) and £'77"C(B) = a(B)(1-pB) /4,
1.

As a typical example we first choose a(P) = (1—/%4)'
Analysis of f'(ﬂ) and f.true(ﬁ) now yields two sequences 21

Y€ which show opposite trends, but both sequences

and XE
extrapolate to 1.25 at high order (cf. fig. 4.10). The

discrepancy between the two sequences decreases with increasing

order, and one might
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therefore conclude on the basis of the simple model functions
studied, that the spurious singularity is relatively inimport-
ant. However, in the next chapter we shall analyze series

for a real system which exhbits crossover, and we shall see

true can actually grow

that the discrepancy between Aland Al
as ) increases and it is quite easy to infer incorrect

exponents (Oitmaa and Enting 1971, 1972, Paul and Stanley 1971,
1972, Rapaport 1971). From this we conclude that a correction
for the spurious singularity is necessary. In practice

this singularity is "removed" by multiplying the series by
(l—ﬂ/ﬁz)v. If the spurious singularity arises from a

bilinear transformation, thenp2 is just the parameter in (4.11),
and hence is known exactly. The exponent¥ is in principle

the same as the exponent A, and usually the sequence xgcan
provide a reasonable estimate for A. Therefore after multi-
plying the series by (1- ﬁ/ﬁsp)_w the singularity at ﬁz is
removed completely, or is made extremely weak compared to the

physical singularity.

In either case, the trends that occur now should more
closely reflect the features of the physical singularity only.
This will be verified in the next section where we study the

anisotropic three-dimensional Ising model.
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Figure Captions
Figure 4.1) Comparison of a typical thermodynamic function
~N
A(P), and the series representation A(p) based
on a finite number of terms. The trancation

is not accurate near the critical point.

Figure 4.2a) Idealized illustration of crossover. TFor a
range of B, A(B) varies as (l—ﬁ/pc)-az.
However at the crossover temperature ﬁl’A(F)
departs from (l—ﬁ/ﬁc)-kz and only very close

A

toj3C is the asymptotic behavior of (l—ﬁ/ﬁc)— i

evident.

b) Exponent estimates will give the value ﬁz if
only a few terms for X(p) are analyzed. However
if enough terms (>2x) are generated, so that
the series probes into the crossover region

(p>B)> a trend to ﬁl will become evident.

Figure 4.3a) A flow chart illustrating the use of the ratio
and Padé methods. The initial Padé analysis
may reveal further non~-physical singularities,
indicated by the asterisk. Analysis of such
series becomes more complicated (see also

section 10).

Figure 4.4) The ratios of successive terms p,, in the series



Figure 4.5)

Figure 4.6a)

b)
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expansion for (1-f3 =5/4

)34 (dots), and (1-p)

+ (l—ﬁ/l.S)"l (open circles). For the former
case, the Fﬂlie on a straight line, and the
intercept gives the critical point, while the
slope gives the exponent. From the result of
the theorem of Darboux (1878), the difference
between thefu’for the two functions is of order

1/4 and hence this difference vanishes as l —oe.

Schematic illustration of the ratio method. At
each order { the line joining ﬂland Rld
determines the I“estimates for the critical
point and exponent. If the singularity that
determines the radius of convergence is on the
positive real axis, and isolated from all other
singularities, then these estimates appear to

converge to a limiting value as { increases.

The ratios of successive terms 1in the series

-5/4 1/10

expansion for (1-p) (1+ ﬁ/pAF) . When

ﬂAF>l the oscillations in thefkgradually damp
out, but when ﬁAF<1 these oscillations grow

and eventually the ratios will converge to —ﬁAF'

If we choose —pAF=O.6 and pc=l.0, then the
asymptotic behavior of the series is not evident

until more than twenty terms are generated.
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Note that upon averaging the first fewf&, a
reasonable estimate for the location of the more
distant singularity at ﬁc may be obtained. This
shows that the influence of a relatively strong
but more distant singularity on series extrapola-

tions can be overwhelming at low order.

Figure 4.7) The effect of bilinear transformation on
singularity structure. If a Pade analysis of
the original series shows singularities at

ﬁc and then after the bilinear transforma-

~Bare
tion ﬁ—#ﬁ/(l+ﬁ/ﬁAF), the singularity at -ﬁAF

is transformed to -oo, while;SC is transformed
toﬁC/(l+Pc/ﬁAF). A new spurious singularity is
introduced BSP=+5AF and this singularity
originates from the singularity at +<ein the
original series. If we use an incorrect choice
for B, in the bilinear transformation, the anti-

ferromagnetic singularity 1s moved away from

the origin by a finite amount.

Figure 4.8) The effect of the bilinear transformation on

ratios. The transformation ﬁ—bﬁ/ﬂﬁﬁ/BAF) is

-5/4 1/10.

applied to the series for (l~ﬁ) (1+R/0.6)
The "correct" choice for ﬁAF if 0.6, but note
that the choices ﬁAF=O.4 or ﬁAF$0.6 also reduce

the oscillations in the ratios.
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Figure 4.9) The effect of the spurious singularity on

successive ratio exponent extimates. The
1-B/2
1-8

function with a spurious singularity at while
-5/4

function ( ) models a thermodynamic

(1-p)

models the "true" thermodynamic function.

Fiugre 4.10) A better test of the influence of the spurious
singularity is to compare exponent estimates for
(1—P)‘5/4a(ﬁ) and (1_1'.2-;/,;2-)5/"" a(B). These
functions model more realistically the "true"
thermodynamic function and a thermodynamic
function with a spurious singularity respectively.
Both sequences of exponent estimates converge

to 1.25, but from different directions.
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5 APPLICATION OF SERIES ANALYSIS TO THE 3-D ISING MODEL

In this section we apply some of the methods of series
analysis to a study of the susceptibility series for the
three-dimensional Ising model with lattice anisotropy. This
system is found to exhibit crossover (Abe 1970, Suzuki 1971)
as the anisotropy strength varies, and an application of
series analysis methods as outlined in the previous chapter
can successfully describe this crossover. This serves as
a check on the validity of our analysis methods, and this

will prove to be very important in later applications.

We study the model Hamiltonian

x 2
e -Tuy(Zscs, PR sus,)

(5.1)
where the sums are over nearest-neighbor spin pairs in
the same and adjacent x-y planes respectively. Several
authors have studied this system by using series expansions
(0Oitmaa and Enting 1971, 1972, Rapaport 1971, Paul and
Stanley 1971, 1972), and here we shall present only the

results we need to illustrate our method of analysis.
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For R=0 the system is a stack of decoupled two-
dimensional layers, and the susceptibility series for
the system will be that of the two-dimensional Ising model.
This susceptibility diverges at a critical temperature of
kBT/ny=[tanh~l(/2j—l)]_l 2 2.27, with an exponent y of 1.75.
On the other hand when R=1 the system is three-dimensional.
The critical temperature is kBT/nyg 4.51 and the
susceptibility exponent is 1.25. Consider now the situation
for some O<R<<1. At high temperatures the system is
disordered. As the temperature is gradually decreased,
correlations between spins in different x-y planes remain
negligible, but correlations between spins in the same x-y
plane grow at a rate that would indicate a susceptibility
divergence at the critical temperature for a two-dimensional
system with an exponent of 1.75. This will be valid as
long as the ordering effects of the interplame interactions
are weaker than the disordering effects of thermal agitation.
Decreasing the temperature further gradually increases the
tendency for spins in different planes to align, and a
crossover from two-dimensional to three-dimensional ordering
begins. Just above the three-dimensional critical temperature
the correlations are three-dimensional implying that the
susceptibility exponent is 1.25 for all R, as predicted by

universality (cf. fig. 5.1).
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This crossover behavior should be evident in the high-
temperature susceptibility series for small positive R
in the following way. The first few terms of the series
probe only the high temperature region, where spin
correlations are two-dimensional and therefore extrapolating
series consisting of only these first few terms should indicate
two-dimensional behavior, that is, a susceptibility exponent
of 1.75. Generating more terms in the series effectively
probes to lower temperatures and eventually the three-
dimensional exponent value of 1.25 must be evident. For
smaller R values, the crossover region shrinks (cf. fig. 5.2)
and hence correspondingly more series coefficients are
required in order to observe crossover. This simple

intuitive picture willemerge in our study of the series.

We first analyze the raw susceptibility series for a
range of R values. Figure 5.3 shows the successive ratio
exponent estimates 9 plotted against 1/%. Due to the
presence of the antiferromagnetic singularity, there exist
oscillations in these plots which hide the order~by-order
trends in the Y- We therefore bilinearly transform the
series, using for BAF in eq. (4.11), an estimate based on a
Padé analysis of the logarithmic derivative of the original
series. Plots of the resultant ) versus 1/% are shown in
figure 5.4. The oscillations have now been removed, but

understanding the trends that occur now is difficult.



It appears that y does depgggyon R in contradiction to
universality. However a Padé analysis of the transformed
series reveals the spurious singularity (cf. fig. 5.4).

Based on our experience from section 4, we expect that the
effect of this singularity will be substantial and therefore
we correct for this by multiplying the series by (1—6/Bspfv.
For zr we use both 1.25, and also the value of the susceptibi-
lity exponent based on a Padé analysis of the original

series (see also section %). Both choices forwv should give
consistent results, and we find this to be the case. The
physical singularity is now well isolated, and the expected
crossover behavior is evident (cf. fig. 5.5). For small R,
an extrapolation of the first few ykshmncsharp downward
trend. This downturn occurs at higher order for smaller

R, thereby indicating that the crossover region shrinks as

R decreases (cf. fig. 5.2). The trends in the Yl are

quite striking and strongly suggest that y=1.25 for all
O<R<l. Because the spurious singularity correction appears
to be an essential complement to the bilinear transformation,
we shall define, for applications in the following sectiouns,

the bilinear transformation to mean both the bilinear trans-

formation and the spurious singularity correction.

In order to be certain that the analysis trends are
physical and not the result of the transformations we perform
the following check. The analysis procedure we employ

involves the two parameters BAf and V', and if we are justified
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in trusting our methods, the results we obtain should be
insensitive to the choices of ﬁAF and . To test this, we
first bilinearly transform a typical raw susceptibility series,

using for a range of values aroung the optimum value. Each

AF
resultant series shows a spurious singularity, and we correct
for these by multiplying each series by (l~ﬂ/ﬁsp)—zc where
for v we also use a range of values around the optimum. The
resulting sequences we obtain are only weakly dependent

on the choice of PAF and Vv (cf. fig. 5.6), and moreover the
trends in each sequence are the same. This further confirms
our result that the trends found from analyzing the trans-

formed series are physical, and do not originate from the

transformations themselves.

We have treated the anisotropic Ising model in detail
in order to develop an analysis procedure that is appropriate
for detecting crossover phenomena. Specifically, we wish
to observe trends in series extrapolations due to crossover
only, and this seems to o cur when we have sufficiently
isolated the physical singularity in the complex -plane.
When we have accomplished this, the trends we find agree with
our intuition, and therefore strongly support the validity of
our analysis methods. This confirmation is important, because
in later applications to the R-S model our analysis results
are, not so easily interpreted. For this reasom it is important
that we have strong evidence that our analysis methods are

to be trusted.



References E;Si

Abe R 1970 Prog. Theor. Phys. (Kyoto) 44 339

Oitmaa J and Enting I G 1971 Phys. Lett. 36A 91
- - - -1972 J. Phys. C 5 231

Paul G and Stanley H E 1971 Phys. Lett. 37A 347
- - - - 1972 Phys. Rev. B 5 2578

Rapaport D C 1971 Phys. Lett. 37A 407

Suzuki M 1971 Prog. Theor. Phys. (Kyoto) 46 1054




Figure Captions 9(}

Figure 5.1 An idealited illustration of crrosover for the
anisotropic Ising model. For some temperature
range above TC, the susceptibility appears to
vary as (T - chzht At lower temperatures,

a crossover to the asymptotic behavior of
(T - Tc; qoccurs.

Figure 5.2 A projection of the phase diagram onto the T-R
plane. The dotted arrow schematically illus-
trates that progressively longer series
probe progressively closer to Tc' For smaller
R values, ordering in the z-direction besins
progressively closer to TC, and the crossover
region shrinks.

Figure 5.3

(a) Successive ratio exponent estimates for R = 1.0

(dots), and R = 0.01 (squares). For R = 1.0,
a naive averaging of the ratios produces a
smooth curve that quickly converges to 1.25
(open circles). However, when R = 0.01,
the result of the averaging procedure still
shows oscillations, and no definite trend
to 1.25 is evident (open squares).

(b)), () The singularity structure of the logarithmic
derivative of the raw series for R = 1.0 and

R = 0.01, showing both the physical (denoted by

an f), and antiferromagnetic singularity {(denoted



by af). Other ;aégularities which appear
consistently in the Padé table are marked
by an x.
Figure 5.4

(a) The successive ratio estimates which occur
after the bilinear transformation ﬁ*ﬁ/(i*ﬁ/}BAF).
From the Padé tables of the "raw" series,
the choices f3a; = 0.245, 0.446, 0.465, and
0.463 are used for R = 1.0, 0.1, 0.05, and
0.01 respectively. The estimates for R =
0.1 and 1.0 appear to converge to 1.25 from
above and below respectively, while estimates
for the case R = 0.01 only increase. No
definite trend in the exponent estimates
as a function of R is evident.

(b),(c) The singularity structure of the bilinearly
transformed series showing the physical
singularity and the spurious singularity
(denoted by sp). Note also the presence of
the additional singularities in the first
and fourth quadrants.

Figure 5.5
(a) The successive ratio estimates after a spurious
singularity correction of multiplying the
series by (1—ﬁﬁ§sp);y is made. From the Pade
tables of the bilinearly transformed series,

the choicesw¥=1.24, 1.26, 1.38, 1.46 are used



(b), ()

Figure 5.6

£

for R = 1.0, 0. ,é0.05, and 0.01 respective-
1y (cf. fig 5.4 (b), (c¢) ). The estimates
shown indicate the crossover behavior that
is explained in the text. Note especially
that for R = 0.01, the first few YL appear
to extrapolate to the two-dimensional exponent
of 1.75, and then there is a sharp downward
trend indicating that the Xi will converge
to 1.25.

The singularity structure of the series after
the bilinear transformation, and a spurious
singularity correction. The additional
singularities which remain in the complex
ﬁ»— plane are much weaker than the physical
singularity.

The sensitivity of the exponent estimates

on the choices of ﬁgp and v is shown for
the typical case R = 0.01. In both (a) and
(b) a wide range of choices for‘ﬁAp in the
bilinear transform, and ¥ in the spurious
singularity correction lead to small changes

in extrapolations for the exponent.
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III. RESULTS
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ABSTRACT 107/

We study the properties of a model system that exhibits a transition
between ferromagnetic and helical order at a Lifehitz point, as interaction
parameters R and S compete. Here R = JZ/JXy and S = Jz'/ny, where J,

and J,' denote interactions between nearest-neighbour and next-nearest-
neighbour spin pairs respectively in the z-direction, and ny is a
nearest-neighbour interaction between spin pairs in each x - y plane.

We calculate the high-temperature susceptibility series to order 8, 6, 5,
and 35 respectively for the Ising, planar, Heisenberg, and spherical

models (N =1, 2, 3, and «). In order to verify our results, we derive
rigourous results which provide strong checks on the series coefficients.
Series analysis is focussed on the ferromagnetic phase. 1In particular,

we confirm scaling with respect to both parameters R and S. In additionm,
we find that the critical region shrinks as the Lifshitz point is approached.
This is evident from analyzing the spherical model series where asymptotic
series behaviour is not evident, even at order 35. Finally, by exploiting
simple geometric ideas about the dependence of the correlation length on

R and S, we describe the full wave-vector and temperature dependence of

the structure factor.



1. INTRODUCTION

10%

Recently, much attention has been given to the following

n~vector Hamiltonian

W ‘3;,\32.“5’:.:;5 31 2 S.e Sé 3; ZS“ *S;

~31A5(4_. -S4 +RZsb .5 +S§.‘s';-'s',-) (D

where the first two sums are over nearest-neighbor pairs

"
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in the same and adjacent xXx-y planes respectively, and the
third sum is over next-nearest-neighbor spin pairs along

the z-axis only (cf. fig. la). This Hamiltonian was first
introduced by Elliott (1961), and the recent interest in this
model is due to the fact that it exhibits a transition,

as R and S vary, between ferromagnetic and helical order at a
Lifshitz point (Hormnreich et al 1975 a,b). The helical phase
arises from the competit;on between the interactions R and
When S/ JRjis sufficiently negative, the helical phase is
energetically favored.

In this paper we will study the ferromagnetic phase of
this system by using high temperature series, while the
‘properties near the Lifshitz point, and in the helical phase
will be treated elsewhere. From previous work on this model,
using both mean-field theory (cf. Appendix A), and exact results
for the case n =eo(Hornreich et al 1976) it is predicted that
helical order exists for S<-|R|/4, and that spatially uniform

order exists for S»-\R{/4. Here, spatially uniform
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order means ferromagnetism for R>0, and metamagnetism

for R<0. Because of the symmetr& of the system,
corresponding "staggered"f thermodynamic functions for
R<0, and "direct" thermodynamic functions for R>0 are
identical. Therefore in what follows, we consider the
case.R>O only. Since the two parameters R and S determine
the type of order that exists, we call the model
Hamiltomian (1) the R S model. Figure 1l(b) is a schematic

phase diagram.

An interesting feature of the ferromagnetic phase
is that series analysis indicates exponents which appear
to vary continuously with R and S, and this variation
is quite large near the Lifshitz boundary. However,
according to the renormalization group, one set of universal
exponents exists in the ferromagnetic phase, while a
different set of exponents exists in the helical phase
(Droz and Coutinho-Filho 1976, Garel 1976, Garel and
Pfeuty 1976). Consequently the exponents will change dis-

continuously as R and S vary through the Lifshitz point.

These apparently conflicting results are reminiscent
of the situation found in anisotropic systems. This

type of a system may be described by the R S model with S

TBy staggered, we mean alternation in successive x-y
by planes, rather than site alternation.



110

set equal to 0. It is well known that for any R#0 the
exponents are those of a three~-dimensional system, while
for R=0 the exponents change discontinuously to two-
dimensional values. Analysis of finite length series in-
dicates exponents that vary continuously from three to
two-dimensional values as R+0, and the interpretation

of this was the source of some controversy. Oitmaa and
Enting (1971, 1972) claimed that the analysis results
conflicted with universality, while Rapaport (1971)
pointed out that a continuous variation must occur if only
a finite number of series terms are analyzed, and as R-0
progressively more terms are required to probe asymptotic

behavior.

The same conclusion was reached independently by
Paul and Stanley (1971, 1972), who found that for small R
the first féw exponent estimates based on successive
ratios of series terms appeared to extrapolate to the
two-dimensional value, while at high order a trend to the
three-dimensional value was evident. Moreover,
they computed and analyzed series of order 20 for the
spherical model (n=«), and found that as R decreased, the
order at which the true asymptotic behavior was evident,
increased. Thus the use of the spherical model series
served as an important tool in understanding the asymptotic

behavior of the Ising series as R becomes small, and as
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the critical region becomes correspondingly small. Because
the exponent behavior near the Lifshitz point is not unlike
that found in anisotropic systems, the n =% series will
therefore be used as a tool for understanding asymptotic
series behavior.

In section 2 we outline the series calculation procedure.
We also derive rigourous results for the RS model susceptibility,
and apply these to check certain of the series coefficients.
In section 3, we analyze the series in the ferrofmagnetic
phase and confirm scaling with respect to both parameters R
and S. In section 4, we study the susceptibility series for
both n = 1 (Ising) and n =e0, and we give a simple geometric
interpretation of the fact that asymptotic behavior near the
Lifshitz point sets in only at very high order. Then, in
section 5, we discuss how this interpretation provides an
understanding of the full wave-vector and temperature depen-

dence of the structure factor.
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2. THE SERIES AND A RIGOROUS RESULT

Using the renormalized linked-cluster theory
(Wortis et al 1969, Wortis, 1974), we have calculated
the coefficients aL(R,S) in the zero-field susceptibility

series

< 2
X {2 a, (R.S) (BT, y)

(2)
for Ising, planar, and Heisenberg spins (n=1,2,3) to
order L=8, 6, and 5 respectively. Here B=1/kT. We
calculate the ag(R,S) for (L+1) (L+2)/2 different
combinations of ny, R, and S, and use these results

to solve simultaneous linear equations to determine the

coefficients Ajkl in the multinomial
Jrke (3)

For n=1, the three-variable series in BJ R, and

xy’

S is also re-expressed in the form

X= S S By berh (Bag) baah’(B3a) farh*(83,)

20 jke} (%)
In (4), the coefficients Bjkl are all integers. The
coefficients B, for n=1, and A, for Nn=2 and 3 are

jkl jkl
presented in tables 1-3. Hence from (3) and (4), the

ay may be computed directly. This results in an enormous

T For example,when n=1l,a,=1,a1=4+2R+2S5,
ap=12+16R+2R%2+8RS+16S+252,a3=3424+80R+32R%+11/3R3+96RS+10R?%S
+16RS%+ 80S+3252+11/383
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saving of computer time when series for many different

values of R and S are required.

Moreover, by expressing our results for arbitrary
ny bR, and S we can check many of the Ajkl and Bjkl'
Firstly, we verify known results for the linear chain,
the square lattice, and the simple cubic lattice by
taking the respective limits J = J; =0, JZ=0 J; =w,

J =J J =0, and J =0 J_ =J . More thorough checks
zZ Xy z z z Xy

are provided by genralizing to S#0, the S=0 theorems of

Liu and Stanley (1972, 1973) (see also Citteur and

Kasteleyn 1972, 1973), which relate derivatives of ¥

with respect to R to the two-dimensional susceptibility.

Specifically, Liu and Stanley showed that for S=0,

2 2
3A/5R = 23,4 (%) = 2Txy (¥(Re0,5:0))
R>S:o
(5a)

where qu is the susceptibility of the two-dimensional
square lattice. This result follows from moting that

the graphs which contribute to the term in the suscepti-
bility that is linear in R, consist of one R bond joining
two arbitrary planmar graphs in adjacent x-y planes

(cf. fig. 2a). Since these plgqar graphs lie in

different x-y planes, they are completely independent.

Two inequavalent such configurations exist. Taking the
derivative 3x/3R and then setting R=0, singles out only
those contributions that are linear in R, and (§a) follows.

A second check comes from applying the same argument to
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the R=0 case, with the result

2 ) . 2
YIER =27, (%) * 23, (¥(R0,5:0))

R2%:0
(5b)

A third check involves the coefficient of x that
is proportional to RS. The graphical contribution to
this term consists of one R bond and one § bond, the
endpoints of which connect to 3 planar graphs (cf. fig.
2b). Because R and S are of unequal length, these 3
planar graphs must be mutually independent. Eight
inequivalent such configurations exist. These configurations
are singled out by taking the derivative Bzx/BRSS and then

setting R=S=0. Thus we obtain

5*X /3RS | * 87, (75%)3

ReS70
(Sc)
These theorems also hold if instead of using the

variables R and S, the Ising variables

= - 1
P tanh(ﬁJz)/tanh(ﬁny) and o=tanh(fJ, )/tanh(ﬁny)
respectively are used. Thus to any order L, these checks
verified 2(L+1) coefficients out of a total of

(L+1) (L+2)/2.

Note that the n=1 susceptibility series of eq.(2)
(table 1) has the novel feature that the coefficients
A743 and A843are negative, Thig can be understood by the

following graph-theoretic considerations. In general,

Ajkl consists of the number of self-avoiding walks (SAW)
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that can be embedded on a lattice, with 2-j-k

bonds in the x-y plane, j bonds in the z-direction,
and k bonds of length 2 in the z-direction minus

a disconnected graph contribution. This contribution
is the number of disconnected graphs with the same
number of bonds as the SAW, embedded so that bonds
from disjoint graph pieces share the same lattice
bond. 1In systems previously studied the SAW contri-
bution predominates, and series coefficients are
positive. However, the R-S model possesses a much
more complicated graph topology and affords the
possibility of a large disconnected graph contribu-
tion due to multiple occurrences of disconnected

graphs containing one S bond and two R bonds.
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Our analysis of critical properties in the ferro-
magnetic phase is guided by the genralization of the

scaling hypothesis to this system: there exist#4 numbers

ays aT,aR, and as such that for all positive A,
G OX™H Y, AR, NS): 0GR, TR, S)
(6)

where G 1s the Gibbs potential, H is the magnetic field,
and T(R,S)=k[T(R,S) - TC(O,O)]/JxQ. The new scaling

power ag equals a, since G(H,1,0, S) = G(H,1,S,0) (4if

R
R=0 and S#0, the R-S model reduces to 2 interpenetrating
meta models). A consequence of eq. (4) is that T, obeys

the functional relationship
Qa Ay
T O'RN%S) =) T (R,S)

Setting AR R=1, we obtain TC(R,S)=R?T/3R rc(l,S/R),

D

while if 128S=1, we have TC(R,S)=SaT/aSTC(R/S,1). Thus
along any ray in the ferromagnetic region of Fig. 1b,
TC(R,S) varies as Rl/¢ and as Sl/¢ (where 1/¢=ar/ak=at/aé )
with an amplitude that depends on the ray chosen. For

the case n»®l, we test the validity of this prediction by
using Pade analysis on the series to find TC(R,S). On

a log-log plot of T, versus R, a line of slope f/¢=9/7

fits the small-R data well over a substantial range (cf. fig.

The breakdown of linearity is due to the fact that at
very small R, the series are too short to find the critical

temperature accurately, while for sufficiently large R,

3).
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scaling is no longer valid (Harbus and Stanley 1973 ).
For n=2 and 3 the series are too short to show a linear
range when plotting TC(R) versus R and thus dataare wet

shown.
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4, THE SUSCEPTIBILITY EXPONENTS FOR THE ISING AND SPHERICAL
MODELS

When S<0 and R>0, the interactions R and S compete. This
competition is necessary for the appearance of helical order
(cf.fig. 1b), and it is interesting to study the effect of
this competition on the susceptibility as R and S vary. In
what follows we set R=1 to eliminate crossover effects
between two and three dimensional ordering. The series are
analyzed by complementary use of both ratio and Padé methods.

The ratios pziaz/a oscillate when plotted against 1/%

-1

due to the "antiferromagnetic singularity" B8 on the negative

AF
B-axis, found by examinimg the Padé table for the logarithmic
derivative series for x. We reduce these oscillations by
using the transformation B+Bﬂl+6/8AF) in order to extrapolate
the 2>« behavior of the Py~ Such a bilinear transformation
introduces a new but spurious singularity at BSP on the
positive real axis (cf. fig. 4) which has a substantial
effect on series extrapolations. The exponent assaciated
with BSP is equal to the negative of the susceptibility
exponent (Paul and Stanley 1972). The effect of this new
singularity on series extrapolations is minimized by

N
multiplying the transformed sertes by (1—B/BSP)Y, where
$ is a rough estimate for the susceptibility exponent. The
series obtained after both transformations possesses a

physical singularity which is isolated from all other

singularities, and the ratios p, vary smoothly in 2. From
3 y



119

the py we form the sequence of estimates Ylfl-l(l-pi/le)
for the susceptibility exponent y, where ijLE!Lp’,_—(SL—l)'p,;_1
is a sequence of estimates for the critical temperature.
The ¥, are shown in figure 5 for three representative
values of S,based on Ising series. For n=2 and 3,

the same trends in the Y, are found as in the case n=1l.
However, the n=2 and 3 series are too short to provide
accurate estimates for Yy, even when S=0. Therefore, these

data are not shown.

At first sight, the n=1 data indicate that y does
indeed depend on S. However comparison with a similar
analysis of the corresponding n=» series (cf Appendix B)
shows that this is not the case. As shown in fig. 6, for
negative S the Yy eventually have a downward trend to the
univeral value of y=2 (Joyce 1966). The trend appears
for large % ., and indicates that the critical region
shrinks considerably as the Lifshitz point 1is approached.
This can be understood physically by considering figure 7.
When S=0 the system is isotropic (since R=1 here) and
a correlated region of spins is roughly speaking, a

sphere of diameter mg, where§ is the correlation length.

For a fixed value of I:Ic,as S decreases, the competition
of R and S results in a corresponding decreases in the z-
correlation length, and the correlated region becomes
more oblate. The number of enclosed spins thus

decreases, and this reduces the degree of co-operativity
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in the system. Therefore, for negative S, one must probe
closer to Tc by generating more series terms, in order that
the asymptotic three-dimensional behavior is evident. At the
Lifshitz point, the z-correlation length varies as the square
root of thes-y correlation length (Hornreich et al 1975a).
This marks the point at which the effects of the competition
between R and S are most pronounced. The shape of the cor-
related region.is now quantitatively different,in that the

5

. d- . . . .
volume varies as § , Where d is the spatial dimension,

rather thang'd. The critical exponents are also different
at the Lifshitz poinf.

We can gain more insight by looking at the n=e series
in higher dimensions. Now ferromagnetic interactions exist
in (d-1) - dimensional layers, while competing interactions
exist along one axis only. Therefore, the influence of these
competing interactions should become relatively less important
as d increases. This is reflected in our analysis, where for
comparison with figure 6, we show in figure 8 the sequences

¥y for various S in both four and five dimensions.

Furthermore, in five dimensions, it is clear that even when
S = -%,¥ =1, while in four dimensions it appears that¥ # 1
when § = -%. This indicates that the dimension at which
mean field exponents first occur, the marginal dimension-
ality, etc, lies between four and five. In fact, from the
Ginzburg criterion (Als Nielsen and Birgeneau 1977 and

references therein) it may be shown that dc = 4.5 (Hornreich
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t al 1975 a). At dimension 4.5, the volume of a correlated

region grows as §’ 4.5-0.5_ g 4, and thus mean-field exponents

are expected.
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In the previous section, we discussed how competing
interactions influenced the size of a correlated region.
By translating the discussion into Fourier space language,

we will obtain insight into the full dependence of the

=Y
»

.
structure factor 8('{)‘-’ Z.,<SoS;':) et on both
temperature and 3. In addition, we will see in a simple
fashion why series extrapolations give misleading results

at low order when R and S compete.

First consider S=0. In figure 9a we sketch the
dependence oflg(q,T) on q, and T. Since X(T)=8(H=O,T),
the a=0 structure factor diverges as T#Tc, and this is
reflected in extrapolations based on finite-length
series for X . Now suppose qz=ﬁ,qx=qy=0 where q is small.
For this value of a, the first few terms in a series for
X(qﬁ)differ by only a small amount from the first few
terms for X . Therefore as T decreases the structure
faccorJJ(H,T) initially increases and appearé to extrapolate
to infinity. However at TC,,a(ﬁ,TC)~'3-2+Q, which is
finite, and in fact the structure factor appears to
extrapolate to a divergence at some temperature below Tc'
The éextrapolations of_d(qz,T) for a range of small q thus

lead to a line of apparent singularities in the T-qz plane

(cf. fig. 9a). This line of apparent sigularities
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interferes with extrapolations of.&(a=0,T) to the physical
singularity, just as nearby singularities in the complex
B-plane interfere with the physical singularity. As

more terms in the structure factor series are computed,
the range of q, for which an extrapolated singularity
appears, becomes smaller. The physical singularity

becomes more dominant, and extrapolations for y improve.

Now consider S<0. The interactions R and S now
compete and the correlation length g is thus decreased
relative to the case S=0. Since §'1 is proportional to
the half-width of.a(a,T) the qz%O fluctuations in the
structure factor are enhanced compared to qz=0 fluctuations
(cf. fig. 9b). This enhancement in fluctuations in-
creases the range of qzvalues for which an apparent
singularity exists in,g(qz,T). Thus, it is necessary to
compute correspondingly longer series in order that extrapola-
tions techniques will converge to the physical singularity.

This argument is verified by calculating the high-temperature

series for the structure factor for the R-S model.

It is interesting to note that the effect that we
have described is a precursor of the transition to helical
. . - X
order; in the helical phase ,S(q,T) diverges for some non-
zero value of q. The onset of helical order is
characterized by a structure factor independent of q, to

lowest order (cf. fig. 9b). When this occurs, the competition
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between the interactions R and S is maximized and

series extrapolation methods converge quite slowly.



6. CONCLUSION 125

In summary, we have studied the R-S model in which
competing interactions strongly influence the properties
of the ferromagnetic phase. We have calculated the high-
temperature series to order 8,6,5, and 35 respectively
for the Ising, planar, Heisenberg, and spherical
models. These series were analyzed for a range of R and
S corresponding to the ferromagnetic phasej; in particular
for the Ising series we verified 2-parameter scaling
in both R and S. Near the Lifshitz point, we found
by studying spherical model series,that asymptotic
series behavior is not evident unless quite lengthy
series are analyzed. This arises because of the
competition between the interactions R and S. Geometrically,
these ideas are simply understood by considering the full
wave-vector and temperature dependence of the structure

factor j(a,T).
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APPENDIX A. MEAN FIELD THEORY 12"”

The mean field theory, while not generally providing
correct predictions for critical behavior, does give physical
insight into many of the physical features of the RS model.
In fact, series expansions may be regarded as a systematic
improvement on the predictions of mean field theory (e.g.,
the mean field theory agrees with series expansions to
lowest order).

One principal advantage of the mean field theory is that
it may be systematically applied to yield unambiguous pre-
dictions for all four phases that occur for the RS model
(cf. Fig. 1b).* To find the ordered phases, we minimize the
classical energy. This is accomplished first by noting that
the anisotropy in the system is along the z axis, and therefore
below Tc, spatial variation in the spin expectation value
occurs along the z axis. That is, s = <sé) cos ?5? =<s&cos$1
where S, and s refer to the spin at the origin and at T
respectively, and q is the wave vector describing the ordered
phase. The energy per spin becomes

: - s Fla) <5232
E :Sx%(‘“'l\mt:osc‘+2$¢os1a\')<$° 9,
(A1)

A
where J (q) is the Fourier transform of the exchange interactions

*Many results of mean field theory are well-known, and useful

pedagogical accounts may be found in Brout (1965) and Smart

(aee),



in eq. (l1). Minimizing eq. (A 1) with respect to q yields
three solutions corresponding to commensurate order when
S>-JR} /4, either ferromagnetic (q0 = 0) or antiferromagnetic

L (-1r1/45)

(q0 =4 ), and incommensurate order,qo = cos
when S< - 1\R\ /4.

The critical temperature at any point in the R-S plane
is found from the condition

A
L:Yc : 3_(W)
(A 2)

This may be written as ch = ny (4 + 21IR|+ 28) for commen-
surate order, and kTC = ny (4 + 2R} cos q, + ZSCOSZqo) =
ny (4 - RZ/AS - 2S) for incommensurate order, and from
these formulae, we can describe the critical surface.
For the commensurate phases, the lines of constant Tc
are inclined at an angle of 45°with respect to the R or S
axes, and these lines form part of the diamond shaped figure
shown in figure 10a. Therefore, the critical surface consists
of two planar sections, each of which is inclined from the
horizontal R-S plane by an angle of tan—1 18°.

In the imcommensurate phases, the critical surface can
be 1llustrated by considering the critical line for fixed
R, and decreasing S, starting from the Lifshitz boundary.
This curve initially drops, and then there is a broad trough
at S ==~1RI/Y8 (cf. Fig. 10b). As S=» - o0 , the curve becomes

~

asymptotically linear, and kTC = ny (4-2S8). Therefore, the
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critical surface becomes a glane inclined from the horizontal
RS plane by an angle of tan_12. These geometric features are
shown in figure 10.

Finally, the nature of the phase transition can be studied
as T —9T: by considering the structure factor,

3(q) - LkT-F0)™ 1

= LT - 3.y Lu02Ri2s - g2 0mv4s) vqu (1IRINES) - ]}

-1

(A 3)

2l 1IR\+ 4 S _ ()Rh\us
‘{t tq (q‘n’ RIS 1\ 4y zmm.s) N

Here t = [T - T (o)] /Tc (0), and TC(O) is the critical

C

temperature at q = 0. When S>-1IR{/4 the coefficient of q2

in (A 3) is positive, and a mimimum of.s—l(q) occurs at q = 0
(cf. f#ig. 11). This corresponds to the fact that at any T> TC
the largest fluctuations are for q = 0, and as T -'TC+ these
fluctuations, the susceptibility,diverge, while fluctuations
for q = 0 remain finite.

However, when S < -1IRl /4, the coefficient of q2 in (A 3)
is now negative and a minimum ofé—1 (q) occurs at non-zero
q. An approximate expression for q2 may be found by mini-
mizing .8(q31with respect to ¢, and this gives,

q.* £ -G (IRI+45)/(IR1+168)
(A &)

This expression agrees with q, = cos_l (~IR} /4S) to lowest
order in 1 + JR}/4S. As T—*TC+, ,8(qo) diverges, and fluctua-

tions for all q # 1, remain finite (cf. $ig. 11). The onset

of helical order occurs when!|Rl+ 4S = 0, and here the coeffi-
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cient of q2 in (A 3) vanishesi This condition marks the
transition point between the dominance of non-zero wavelength
and zero wavelength fluctuations, and therefore the tran-
sition can be regarded as an "instability in Fourier space."
At this instability, fluctuations of small non-zero wavevector
are just as important as zero wavelength fluctuations for
T )TC, and the structure factor is no longer Lorentzian, but
rather is much less peaked about q=0 (cf fig. 12). Hence,
one might expect that the critical behavior os a system at
stuch an instability is markedly different than the usual
critical behavior, and this is found to be the case (Hornreich
et al 1975a),.

Physically, the condition |R{+ 4S = 0 also marks the point
at which the competing influences of the R and S interactions
just balance. When this occurs, spin correlatiomns in the

z-direction are drastically reduced (cf, fig. 7) and the nature

of the phase transition is quantitatively changed.
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APPENDIX B THE SPHERICAL MODEL

We consider the R-S Hamiltonian in the spherical model

limit for arbitrary dimensionality d,

d- 2 232
W:-Jd*(Z’SLSS +RZSLS“) + SZ SLS_;)
u L) Ly
(B1)
where the first sum is over nearest-neighbor spin pairs
in the same (d-1) dimensional layer, while the last two
sums are over nearest-neighbor and next-nearest neighbor
spin pairs along one axis (the z-axis). The spins §
can assume any value si<+°° subject to the constraint
2h83= N where N is the number of spins in the system.

It will be more convenient to rewrite (_ Bl) in the

following form,
|
H = - 12 JLSS(_S'
) 3

Most of the thermodynamic properties of this system

(B2)

are determined by the location of the partition function
saddle point, and this is given by the condition

(Berlin and Kac 1952, Joyce 1966),
-1

Z J.,:)/\\;Y =(‘i‘—‘_“‘)d &(159‘% 303 cosz.j'/% J"S)
J

(B3)
g .

where j is the vector distance between the origin and

site j, zSp is the saddle point location, and the

integral is over the first Brillouin zone. We define
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3'!233-.,& and $(C';)52.33'.,3053-3/23 Jo; » and now eq (B3) can

be written compactly as,

T/waT gyt (48 (1 8@ /2ge)
(B&4)
2 fE
=(i'\1‘\)a ‘\{s,%b So\u) ( “2-:;>

EZ PX /Zsim (B5)
X=o

The last equality defines Py, and for the R-S model in d

dimensions we have explicitly,

R
4 Cosw, +Coswa+ *--- +C0S Wy tRecogwy + Scos2wal
%(n)"“ (d-1) + R+S ]"\“’

(B6)

and this integral may be evaluated directly.

The zero field susceptibility can be expressed in

terms of the saddle point as (Berlin and Kac 1952),
-1
(X:(\(BT/I) (leP- 1) (B7)

Thus to generate the high-temperature susceptibility series
we need to revert the series in eq. (B 6) in order to

express 1/2Sp as a series in J/kBT. That is , we have
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w

2 2
2.0 2 2 Qy (3 /kT)
e

(B 8)

Substitution of this series in eq. (B 7) then leads

to the desired result.
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TABLE CAPTIONS 135

TABLE 1: The coefficients Bjkl in the reduced susceptibility series
for n = 1.

8

12 S, Byt BT ek (832 ook 3, )

R=0 k<)

TABLE 2: The coefficients Ajk] in the reduced susceptibility series
for n = 2.~

{X’lz Z /QAS\A_ U&}xﬁ)’lﬂ‘\‘ RQ Sk
o yvk¢

TABLE 3: The coefficients A.jkl in the reduced susceptibility series
for n = 3.

03 S A (B TTRSE

,Q_=o s*kﬁk



Table 1 (a)-(i)
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(a) =0

f\i 0 1 2 3 4 5 6 7
0 1

1 4 2

2 12 16 2

3 36 80 32 2

4 100 336 240 48 2

5 276 1264 1392 512 64 2

6| 740 4432 6680 3888 888 80 2

7| 1972 14768 29136 23600 8544 1376 96 2
8 1 5172 47376 116528 124720 63216 16080 1968 112
(d) k=1

‘f\i 0 1 2 3 4 5 6 7
1 2

2 16 8

3 80 96 10

4 336 672 240 8

51 1264 3680 2360 384 8

6 | 4432 17376 17168 5504 512 8

7 | 14768 74208 100000 52032 10032 640 8

8 | 47376 294624 517648 378272 120960 15872 768 8




(¢) k=2
I o 1 2 3 4 5 6
2 2
3 32 16
4| 240 288 28
s| 1392 2720 928 16
6| 6680 19040 11664 1632 10
71 29136 110336 104192 10400 2112 16
8]116528 563680 725488 350304 58400 2560 16
(d) k=3
I o 1 2 3 4 5
3 2
4 48 24
5| 512 608 58
6| 3888 7520 2512 24
7| 23600 65760 39336 4992  -20
8124720 461344 424432 116352 6144 24
(e) k=4
N o 1 2 3 4
4 2
5 64 32
6| 888 1056 100
7| 8544 16448 5440 32
8| 63216 175520 103616 12384 -132




) J o 1 2 3
5 2

6 80 40

71 1376 1632 154

8 | 16080 30880 10160 40
(g) k=6

) J 0 1 2

6 2

7 96 48

8| 1968 2336 220

(h) =7
2\3 0 1
7 2
8 112 56
(i) =8
P\ ©

13%
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Figure 1

Figure 2

Figure 3

(a)

(b)

(a)

(b)

The three interactions included in the
Hamiltonian (1).

The R-S model phase diagram, showing the
four ordered phases and the Lifshitz

boundary.

The high-temperature graphs which contribute
to the term proprtional to R in the
susceptibility. The wavy lines represent
the set of all arbitrary bond configurations
on one x-y plane only. Another

independent configuration is obtained by

. -
permuting O and r

The graphs which contribute to the RS term
in the susceptibility. Six more independent
configurations are obtained by permuting

the R and S bonds, and O and r.

Log-log plot of T;(R,S) versus R to test

the scaling relation, TC(R,S)=Rar/aRT;(l,S/R).
The inverse cross-over exponent, ¢-l=ar/aR is
4/7 (Abe 1970, Suzuki 1971, Liu and Stanley
1972, 1973). The straight lines have

slope 4/7. Data are shown for three representa-
tive rays in the ferromagnetic region of

figure 1b.
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Figure 4 Singularity structure of the susceptibility
series in the complex B-plane, (a) before
transformation, (b) after the bilinear
transformation. The antiferromagnetic
singularity is moved to -«, while a
spurious singularity is introduced at

+8 and the physical singularity is

AF’
moved to Bc =Bc/(l+BC/BAF). The second

transformation we use removes the spurious

singularity.

Figure 5 Plots of the successive estimates X&’ for
the susceptibility exponent based on Ising
series for three representative values of

S. The arrow marks the true value of Y.

Figure 6 Plots of the successive estimates g s for
the susceptibility exponent based on the
corresponding three-dimensional spherical
model series. In (a) we show the results
when the series are analyzed by the methods
described in the text. However, a Padé
analysis of the raw series reveals an
additional singularity on the positive real
B-axis located at Bgaa , wWith residue A,y .
This singularity is somewhat more distant
from the origin than the physical singularity,

and thus the convergence rate of series



Figure 7

Figure 8

Figure 9(a)

extrapolations ti}{Ze physical singularity

is reduced. Therefore for an improved analysis,
we first multiply the raw series by (l-B/BaddFAadd
and then use the methods of the text. The
resultant Yl are shown in (b). Note that a
downward trend in the xl occurs for 2>20

when S=+0.15, and this..trend is_ much more

apparent in (b) than in (a).

A correlated region of spins is a sphere of

diameter € for S=0. For fixed T-T., as S

decreases, and the correlated region becomes
2%

oblate. At the Lifshitz point g% N(gmﬁ) N

giving rise to quantitatively different

critical behavior.

Dependence on 1/% of !zfor (a) d=4 jyand (b)
d=5 hypercubical lattices.

The complications that occurred in analyzing
the three dimensional series (cf. fig. 6)

do not occur for d=4,5.

The structure factor in T-—qz space, where
- -

q=(qx,qy,qz). For q=0 the structure factor
is just the susceptibility, which diverges
as T-T . For fixed T,the width of the
structure factor peak is related to the

inverse correlation length g-l(T) which

vanishes at Tc. (for T=TC, the structure
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factor varies as q, _2¥Q). For qz=z,

where E is samall, the limiting value of
S(E,T=Tc) is therefore finite; however
extrapolations of finite-length structure
factor series will lead to an apparent
singularity. Thus in addition to the true
singularity at q, = 0, there will be an
entire line of apparent singularities

(sbown dashed) in the T—qz plane. (Note
that the small maximum in‘g(ﬁ,T) at positive

T—TC is expected from the work of Fisher and

Burford 1967).

(b) The dependence of the normalized structure
factor on q, for fixed T>Tc' For negative S
the correlation length is decreased and
the peak broadens. At the Lifshitz point
the peak has a "flat top" corresponding
to the physical fact that fluctuations of
many wavelengths are equally important.

Figure 10 (a) A map of the critical surface in the RS plane,
showing contours of constant Tc' A broad
trough in this surface occurs at § = -1Rl /48"
(b) A critical line for R = 1, and varying S.

Note the exaggerated vertical scale so that the
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trough is readily apparent.

Figufe 11 The inverse structure factor for fixed T»> TC,
in the ferromagnetic and helical phases, and
at the Lifshitz point. The minimum of ,a(q)—1
determines the ordered phase wave vector qd,
and this may be found by minimizing —8(Q)-1

Figure 12 The g-dependence of the structure factor for
for fixed t = (T-T)/T. » 0. At the Lifshitz

y point the coefficient of q2 in (A 3) vanishes,

and the peak is not a Lorentzian. However, in
both the ferromagnetic and helical phases the

peak is a Lorentzian centered about 9,-
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Abstract. We study the transition between spatially uniform and
helical order for a model system with competing interactions. To this
end the high-temperature series for the expectation values of 2*

and 7% with respect to the spin-spin correlation function are calcu-
lated to eighth order in inverse temperature for arbitrary strengths
of the competing interactions. From these series we find the transi-
tion line between uniform and helical order - the Lifshitz boundary.
This boundary differs from what was previously believed. In addition
we compute the ordered state wave vector 9., and we find that as the
Lifshitz boundary is approached,q,—© with an associated exponent of

1/2, the mean field value.
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The problem of helical order for systems with caompeting inter-
actions was treated independently by Kaplan (1959), Villain (1959),
and Yoshimori (1959). By using a mean field approach, ground state
spin configurations were calculated. It was found that the magneti-
zation varied periodically in the lattice, with a wave vector that
depends only on the exchange interactions, and is incommensurate
with the lattice structure. Since their early work, many materials
that exhibit helical order have been found (see Cox 1972 for a review).
Recently, renormalization group techniques have been used by Horn-
reich et al (1975 a,b), Droz and Coutinho-Filho (1976), Pfeuty and
Garel (1976), and Nicoll et al (1976 a,b, and 1977) to study helical
order. The helical state is characterized by a wave vector 90
which is a continuous function of exchange interactions. One focus
of study is the transition between spatially uniform and helical
order ,where 4020 This transition is called the Lifshitz point.
In this article we investigate the properties of the Lifshitz point

by calculating and analyzing high-temperature series for the

Hamiltonian,
i\?;.«\) e '<2t>
Hoe -Jug2.80%-7 Z $3-525% 0 U
<xnd <27 Ay

18t

xb(?sbs + Z&-E}SZ& 5 )

The first two sums are over nearest-neighbour spin pairs in the same
x-~y plane, and adjacent -y planes respectively, while the third

sum is over pairs separated by two lattice spacings in the

% ~direction.
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For S positive the ordered state is ferromagnetic if R 1is
positive, and metamagnetic if A is negative. For negative S the
nearest-neighbour and next-nearest-neighbour intereactions compete
(cf. fig. la), In mean field theory,when S<4<-\WRY/Y4 , the spin con-
figuration which minimizes the free energy is one in which the
magnetization varies sinusoidally in & (cf. fig.lb). When this occurs,
the order parameter is the helical magmetization [7\ , and the associated
wave vector (which is along the z-axis) is cos * (~ \R\/‘\S).

In order to study the transition to helical order we need to
consider the response function,

9'?\/;;'1 z ,&(1,) = 2, so52) ¥
v (2)
where l':l is the magnetic field conjugate to p\ , and the first equali-
ty defines the - structure factor xS‘ (q0) 5 here e (x,ay2),
To investigate the Lifshitz point, where 90 - (o) , we expand

(2) in the following form,
Bala)=Z (osay (L= a'2V2r v qrayr = <00 ) G

AP R 2 PR 1

The second equality defines the - moments of <$oS;’> , and
’X = ,51(0) is the direct susceptibility. Equivalently, we

write,



- 1623
.Z),(q,) z 'X-l(_l F /LN + q¥2y (6 /X -<e /X ) ¢ e ]

(4)
The odd terms in 2 of (3) and (4) vanish by symmetry.
-1 .
When uniform order occurs, «é; (q,) has a minimum at q*0 ,
and at the critical temperature X '=0 . However if the coefficient
of 011 in (4) is negative, then a minimum of 'é{t(q,) occurs for
non-zero q , and helical order is present (cf. fig. 2). The vanish-

ing of the coefficient of q’“ in (4) is therefore the transition

between helical and uniform order. Consequently the Lifshitz boundary

in R-S space is found by the condition <3*)/X = © . Furthermore,
by minimizing 4&‘:(%) with respect to q » we find thet the wave vector
of the helical order 1s,

g2 = (< x ]/ TR ~6<ay?] (57
Thus the series for X s <1‘> and (1‘*} are required to study the
Lifshitz point in the appréximation scheme that we have introduced.
The series. By using a computer program based on renormalized
linked-cluster theory (Wortis et al 1969 , and Wortis 1974) 5
we have calculated {3}) and {3*) to order 8 in /3 =i/\<T (k=
Boltzmann's constant, | = temperature). We present the series in the
following form that was found convenient for the susceptibility series

(Redner and Stanley 1977).

¢y e G . . (G a)
) 2‘- -k Kk '
=S S| e T ATy e 28T Yo" (£T,)
% Q Zw>§ £1D ;]*ktx, D,)kk. «‘ \53
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As was the case for the susceptibility, many series coefficients can
be checked by generalizing the results of Liu and Stanley (1972,1973)

to the functions <%*? and <Z%), We find

A</ 2»9/»o lf I pslc,, * ‘3<;;>/z.>.}lf,°= 32 )/320c g * Famh (BT2) e ? (Fa)
. 3
31429/“\0 Jfér \F___G_: o R<ED/328 c)r:)r lf:..-.g "{'ankl(6'$x3\ 'X_S% (Qr 3O

- 3
VB, = et loso * 9GY/323p oo 7 S0 o fanlr (8 Seg) Ky, L3O

where /onraw\\q(,BSz)/\—an\q (}33:“03 and 0= & tash [ B327)/ Fank (ﬂij
and Xs«.\,E /X (/o= (o] ,Krto) is the square lattice
susceptibility. To any order § , we can check & (4-1) coefficients out
of a total of A(&v\)/2 coefficients.

The Lifshitz boundary. We find that the Lifshitz boundary occurs for

smaller values of S/R than predicted by mean field theory (cf. fig. 3b).
Our reasoning is as follows. When uniform order is present, all terms
in the series for (1‘)/%5%@/31 are positive. As the system changes from
uniform to helical order, <¢)/\ changes sign and some of thehgmust be
negative. Low order series are not expected to show the correct
asymptotic behaviour, and series extrapolation techniques reflect this
situation. For(tﬁ/%,positive, the successive ratios ﬁgbz/qu show no
curvature when plotted against ¥/{, suggesting the series extrapolate to
a positive divergence. We find that at some value of S smaller than
~\R\/§, b, changes sign. As S becomes more negative, successive

terms by,ba,... change sign and eventually all 8 calculated b, become
negative, so that all 8 f&_are positive. Once this has happened, a

plot of/i versus Yj displays strong downward curvature, showing a trend



s
)
to negative py (cf. fig. 3a). This suggests that a sign change in the

b, occurs beyond order & and that the infinite series still sums to a
positive number. As S decreases still further, the curvature in the ratios
suddenly disappears, suggesting that the sign change in thelu.no longer
occurs. We interpert this sudden straightening of the ratio plots to mean
that (i?/fl is negative, and the transition to helical order has occurred.
It is of course possible that curvature in the ratios and a sign change
in the Yyoccurs at very high order (so that <*)/X is actually positive).
Were this the case, then the sign change in {#?/X would occur for even
more negative S and the Lifshitz boundary would be even further displaced
from the mean field result S=-\R\/4.We note that the py for the <z*%/%X
series oscillate when plotted againstyqdue to the antiferromagnetic
singularity in X. For this reason, it is easier to see the straightening
if we plot <¥? ratios instead (cf. fig. 3a). The conditions </ X=vor
<¥7~0 give consistent results for the Lifshitz boundary as shown in
figure 3b.

We next consider the exponentﬁk, introduced by Hornreich et al
(1975 a), which describes the vanishing of the ordered state wave vector
qo near the Lifshitz point. Specifically,qpﬁu(x*xkjﬂg where Xz S/R
and %, is the Lifshitz point value. Fixing R=1 and varying S, we evaluate,
at the estimated critical temperature, the series for‘qofrom eq. (5).
We estimate (cf. fig. 4) that ﬁq‘Yxﬁ.ol, which is consistent with mean
field theory and renormalization group calculations (in which corrections
to pa:¥2are of second order in £ . The amplitude however is a factor of

9 larger.
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To summarize, we have found a criterion for the Lifshitz boundary
in terms of z-moments of spin-spin correlation function. Series analysis
shows that this Lifshitz boundary is shifted from what is currently
believed. The ordered state wave vector however, seems to vanish at the
Lifshitz boundary with an exponent predicted by mean field theory, but
with an amplitude that is almost a factor of nine larger.

The authors wish to thank Drs. T S Chang, G F Tuthill, W Klein,

A M A Hankey, and especially Mr. P J Reynolds and Dr. J F Nicoll for

enlightening conversations.
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Table 1 (a)-(i) 169

(a) =0

D 0 1 2 3 4 5 6 7 8
0 0

1 0 2

2 0 16 8

3 0 80 96 18

4 0 336 672 304 32

5 0 1264 3680 2816 704 50

6 0 4432 17376 19504 8256 1360 72

7 0 14768 74208 112432 70208 19424 2336 98

8 0 47376 294624 572464 484864 197584 39456 3696 128
(b) k=1

B 0 1 2 3 4 5 6 7
1 8

2 64 40

3 320 480 112

4 1344 3360 1920 232

5 5056 18400 17792 5376 400

6 17728 86880 123008 63744 11904 616

7 59072 371040 707840 542912 175680 22528 880
8 | 189504 1473120 3597952 3471728 1807232 402304 38272 1192
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(c) k=2

) J 0 1 2 3 4 5 6
2 32

3 384 208

4| 2688 3360 640

5| 14720 30368 14336 1360

6] 69504 206432 165696 41312 2368

7| 296832 1176320 1385472 604096 92928 3664
811178496 5936608 9418112 6141280 1687808 177408 5248
(d) k=3

i\\} 0 1 2 3 4 5

3 72

41 1216 632

51 11264 13280 2320

6| 78016 150240 65152 5304

71 449728 1240160 913920 202008 9408

812289856 8379040 9057664 3569408 475008 14648

(e) k=4

NS O 1 2 3 4
4 128

5/ 2816 1440

6| 33024 37920 6352

7| 280832 523328 217088 16032

811939456 5148064 3620672

747104 29120



5 200 1 4
6 5440 2760

71 77696 88032 14416

81 790336 1446688 585088 40584

(g) k=6
) J o 1 2
6| 288

71 9344 4720

81157824 177440 28672

(h) k=7
E\j 0 1
7

392

8114784 7448

(1) k=8

UL

81512
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Table 2 (a)-(i) 1’79

(a) =0

INJ 0 1 2 3 4 5 6 7 8
0 0

1 0 2

2 0 16 32

3 0 80 384 162

4 0 336 2688 2608 512

5 0 1264 14720 23552 10496 1250

6 0 4432 69504 160048 117504 31312 2592

7 0 14768 296832 911920 964352 421472 76928 4802

8 0 47376 1178496 4602160 6493696 4085968 1214592 164976 8192
(b) k=1

P\J

1 32

2 256 328

3| 1280 3936 1600

4| 5376 27552 26112 5320

5| 20224 150880 237056 111744 13888

6 | 70912 712416 1616384 1263744 360960 30664

7 1236288 3042528 9227264 10428992 4942080 956800 59968

8 | 758016 12078584 46628376 70446752 48338432 15504640 2192396 107080
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Q\J 0 1 2 3 4 5 6
2 512

3 6144 4240

4 43008 67872 18688

51 235520 610976 389120 58768

6 | 1112064 4141664 4367616 1541216 148480

7 | 4749312 23561984 35825664 21084352 4758528 321424
8 | 18855936 118768096 240857600 205580896 77806592 12269568 620800
(d) k=3

) J 0 1 2 3 4 5
3 2592

4 41728 24536

5| 376832 495968 115648

6 | 2560768 5489760 2951680 375384

7 114590720 44618720 39684096 11926144 963840

8 | 73634560 298241824 382199296 192732032 37246464 2106200
(e) =4

No_ o 1 2 3 .

4 8192

5 167936 92448

6| 1880064 2286624 489280

7| 15429632 30337088 14913536 1700640

8 1103899136 289959328 235291904 63933536 4537088




(£) =5

| 174
I\ J 0 1 2 3
5 20000
6{ 500992 266856
7| 6743552 7869792 1603264
8| 65375488 122642848 57193984 6076176

(8) k=6
) J 0 1 2
6| 41472

71 1230848 643504

8 119433472 22139168 4376320

(h) k=7
ﬁ\ J 0 1
7

73832

812639616 1364216

(1) k=8
o

81131072



Figure Captions 1 7 C;

Figure 1 a)

Figure

Figure

Figure

Figure

b)

3 a)

3 b)

The competing nature of the interaction for the case R»o 5<o.

If spins 1 and 2 are pointing up, then the R interaction

tends to point spin 3 up, while the S interaction has the
opposite effect.

An example of an ordered state for ¥Rin the helical region.

The wave vector¢v, is parallel to the spin axis, and the wave-
length for the ordering shown in 6 lattice spacings.

The dependence of the inverse structure factor as a function of
for fixed T>Te. Writing §; ()% X [Lta(RS5T)a* +b(R,5, g%+ ]

-1
then a minimum in 'él("v\ can occur at non-zero q when a(R,$,T)<o.

Sample plots of successive ratiOthpfthe‘<¥W series for R=1 and
various values of S. The straightening of the ratios is
interpreted as a sign change in <T*? . Similar results are
obtained for R = 0.4,0.3, 1.3, and L.G.

Estimates for the Lifshitz boundaries based on the two criteria
{2%*?/7n:0and on <t') o . The Lifshitz boundary predicted by

mean field thoery is shown for comparison.

Log~log plots of %:versus (x-%(R) for the case R-1. Here
X:yR, and XL (R) is the location of the Lifshitz point. Shown
are both series estimates (xu(R:\) £ -0.2%o4 ), and mean field
theory (x.=-015 ferall R ). The straight lines kave slope
unity, indicating that 1.~(x-x.._)or/3$= V2 . The amplitudes differ

by a factor of 9,as might be expected based on
further work which indicates that well inside the helical

. series meanfield .
region (16 * Qo as shown in the inset.
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Abstract. We study the properties of the helically ordered phase
for a magnetic system with competing interactions. To this end
the high-temperature series for the structure factor are generated
for arbitrary q, to order eight for Ising spins, to order six

for classical planar spins, and to order five for classical
Heisenberg spins. Analysis of these series shows that the wave
vector q_ associated with the helical phase is temperature depen-
dent. Furthermore, we can locate the Lifshitz point, where q0—>0,
and our results agree with an earlier independent study, which
predicted the location of the Lifshitz point to be different than
that given by mean-field theory. Further analysis indicates

different exponents for the ferromagnetic and helical phases.
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In two previous articles (Redner and étanley 1977 a,b), which we will
refer to as I and II respectively, we studied a model Ising system in which
there exists a helically ordered phase. Here we will extend our study
to include Ising, planar, and Heisenberg spins, n=1,2, and 3 respectively.

The Hamiltonian is,

N Ty

RN a KX -

- - - -» -

SL'S", + R 2 Sé's") ¥ 52 : S;So )
L

= i (1)
where the first two sums are over nearest-neighbour spin pairs in the
same and adjacent x-y planes respectively, and the third sum is over
next nearest-neighbour pairs along the z-axis. The type or ordered
phases that exist depend on the values of R and S, and hence we call
the Hamiltonian (1) the R-S model. For positive R, and S sufficiently
negative (see II, and also Kaplan 1959, Villain 1959, Yoshimori 1959),
a helically ordered phase exists, which may be characterized by a helical
magnetization %, which varies periodically in z, and in general, the
wave vector_cz0 associated with ﬁ is incommensurate with the lattice.
For the R-S modellag is always along the z-axis, and in what follows
we shall write qo instead.

Near the critical point,flucf;uations of wave vector q become
large, and as T —#TC+, the response of ﬁ with respect to its conjugate
field ﬁ diverges in a manner analogous to the divergence of oM/an for
ferromagnetic systems. Thus, a study of the response function éﬁlég is
necessary in order to understand the phase diagram for the system. It will
prove to be useful to write Qﬁ/ég in an equivalent form that defines the
structure factor,&(qo).

~ o .-»b‘:, 3 N
OM/dH 5,3(%.) ‘Z<S°S:>Lw‘ : Z,(s,s;)_a v
i " (2)
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For the R-S model, mean field calculations predict that in the helical
phase g5 = cos -1 (—lRI/&S)rcihe Lifshitz point (where q_ -* 0) occurs at
S = -{R1/4 (Elliot 1961). However, recent calculations indicate that q,
is temperature dependent (Villain 1976). This feature is also found

in experimental studies of paterials which are believed to be described
by the R-S Hamiltonian (Cable et al 1961, 1965, see Koehler 1965, and

Cox 1972, for reviews). In this article we present the first high-
temperature series analysis of this problem. Previously, only mean-field
theory predictions existed. We find that q, is indeed temperature de-
pendent, and that the Lifshitz point is different that S = -|R}/4.
Further analysis indicates a structure factor exponent which is different
in the ferromagnetic and helical phases.

By extending a program based on renormalized linked-cluster theory
(Wortis et al 1969, Wortis 1974), we can generate series for each two
spin correlation functions (SOS{) . It is then simple to perform the
required sum in (2) to obtain structure factor series for arbitrary q.
From the structure factor series, the temperature dependence of q,
can be made evident by the following analysis. First, by expanding the

“inverse structure factor for small q we write (see also II),
-\ -4
SY =X (1AM +BMa¥ - ClT)aq®+-=)
(3)

In the helical phase, the functions A(T), B(T), C(T)... are all
positive, andx_'1 is the inverse direct susceptibility. The structure
factor for fixed T i's peaked at qy and the location of this peak may
be found by minimizing.g(q;‘ with respect to q, or equivalently maxi-

mizing (Aq2 - Bg® + Cq® +...).
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In mean-field theory, the functions A,B,C..., which are related to
the moments of the two-spin correlation function, are temperature
independent, implying that q, is also temperature independent; in fact,
one can readily show that qo = cosé-l ( -\Rl /4S). However, it is actually
the case that the functions A,B,C... each have different temperature
dependence, and therefore q, must depend on temperature. This behavior
is verified by examining the q dependence of the coefficients an(q) in the
series expansion for ,S(q) = éozﬁqﬂ Bh , where B=4/«T . The coefficient

a, (q) is identical to its counterpart found by using mean field theory,

1
and therefore al(q) versus q is peaked at cos—l ( -|R}/48). If we fix
R=1, then when S2 -0.65, we find that the peak of an(q) versus q occurs

at progressively lower q as ® is successvely increased (cf.fig. 1) and
therefore the peak of 43(q) versus q must move to lower q as T is

decreased (cf. fig. 2). For S -0.65 the opposite behavior occurs. Our
estimate for q, at T, is based on observing, from the form of the structure
factor in eq (3), that ,8(q0) diverges at Tc’ while ,X(q) for q # q,
extrapolates to an apparent divergence at lower temperatures (cf. fig. 2).
Therefore, the peak of T.(q) versus q locates dq and from this method

we find that the onset of helical order occurs at S = -0.271, -0.263, -0.258
for Ising, planar, and Heisenberg spins respectively (cf. fig. 3). We

find that the dependence of q, on R and S is also found to be different than
the predictions of mean-field theory as shown in figure 3. Furthermore,
near the Lifshitz point these results are in agreement with the conclusions
of an earlier independent analysis outlined in II (cf. fig. 3).

Having approX¥imately located q,» We can then study the divergence of

A(qo). Using techniques described in I, we first analyze the series to
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map out the critical surface, and in figure % we show typical critical
lines as a function of S for fixed R=1l. These curves vary smoothly through
the Lifshitz point and the shape of the critical line is in qualitative
agreement with the predictions of mean-field theory. Near the Lifshitz
point, our data is eonsistent with the scaling prediction that
Tel) -Tlx) ~ (x-’x,_)w" where x = S/R, x1, is the Lifshitz point
value, and ¥, is the exponent of the direct susceptibility (Droz and
Coutinho-Filho 1976, see also Hornreich et al 1976).

Our study of the structure factor exponent ¥ reveals the interesting
feature that ¥ appears to vary continuously as the parameters R and S
vary (cf. fig. §). However, based on universality, we expect exponents
which may be different for the ferromagnetic and helical phases, but which
are independent of R and S. Consequently, a discontinuity in the\
exponent should exist at the Lifshitz point. This apparent shortcoming
of series analysis has also been found in previous studies of systems
which go from one universality class to another as interaction parameters
vary (Oitmaa and Enting 1971, 1972, Paul and Stanley 1971, 1972, Rapaport
1971). Based on these experiences, we interpret the rapid variation in
exponent estimates near the Lifshitz point as evidence for a discontinuity.
Our interpretation is also guided by recent results of renormalization
group calculations which predict and compute the magnitude of the dis-
continuity for Ising and planar spins (Droz and Coutinho-Filho 1975,
Garel 1976). For Heisenberg spins, evidence for a first order phase
transition is found, but this feature is not indicated by our series
analysis.

The apparent dependence of ¥ on R and S therefore does not necessarily

contradict universality, but rather it appears to confirm our hypothesis
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that the trend to overestimate'X is due to the widening of the structure
factor peak in q space, as discussed in more detail in I. We find that
the largest overestimate for ¥ occurs when the contribution tOdB(Q) from
wave-wectors q # q, is a maximum, and this occurs when S =~0.35|R\ as
shown in figure 5. On the other hand, for large negative S, competition
between helical ordering and metamagnetic ordering occurs (as S/R—>-#o the
system becomes two decoupled metamagnets), and therefore we expect low
order series will extrapolate to the exponent of the direct suscepti-
bility, and this appears to be the case. Ffom our data we roughly estimate
a structure factor exponent of 1.35 £ .05, 1.40 * .05, and 1.43 % .05

for Ising’planar, and Heisenberg spins respectively. Note, however,

that estimates of ¥ based on series of order six for planar spins,

and order five for Heisenberg spins are too low when § = 0 (cf. fig. 6).
Consequently, we expect that the estimates for the exponent in the

helical phase will also be correspondingly low.

In conclusion, series analysis of the R-S model shows that sub-
stantial corrections to mean-field theory predictions exist near the
Lifshitz point. The wave vector q, associated with the helical phase
is found to be: a) different thatn cos -1 (~-\R|/4S), and D) temperature
dependent. Furthermore, the location of the Lifshitz point, where
qo-b 0, does not occur at S=~4R\/4. Analysis for the structure
factor exponent is quite difficult, but it appears to be consistent
with renormalization group predictions, except for the case of
Heisenberg spins where no evidence for a first-order phase transition
is found.

The authors wish to thank Mr. P.J. Reynolds, Drs. J.F. Nicoll,

T.S. Chang, and W. Klein for many extremely valuable discussions.
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Figure Captions 1 8 (’

Figure 1la)

1b)

Figure 2)

Figure 3a)

The q dependence of the coefficients alﬂq) normalized

to the same peak height, which appear in the partial

sum '88(%)5 ’.Ziqj(.')ﬁ'q for Ising spins for the case

R=1, S=-0.3. For larger Q the vertical scale is more
compressed so that the peaks fit on the same graph (The

actual values of the coefficients at peak value are:

ay ® 5.433, ag £ 1575, and Qg ® 89475). The arrows make

the approximate locations of each peak, and note that ai(q)

is peaked at q* cos™ (-\RV/us) € 0.55

The q dependence of the Ising structure factor for fixed

T—'l‘c found from the partial sum %.o alteQ 52 . Shown are typical
curves for various S and fixed R = 1. Note that for S = -0.4
the contribution to.g(q) for q # q, is quite large.

A schematic picture of the structure factor in T-q space.

For high temperature the peak of.&(q) occurs at q = cos—1 =RV4S)
and as T decreases, this peak moves to lower q for S > -0.65,

and to higher q for $< -0.65. Extrapolating series for.3(q)
gives rise to a line of apparent singularities in the T-q

plane, and the peak of this curve locates 9, at Tc'
The ordered phase wave vector squared versus S/R for the case
R = 1 and Ising spins. Shown are: the mean field predtiction
q, = cos -1 ( - R /4S) (shown dashed), the prediction based
on the location of the peak of -3(Q) versus q which is an

overestimate for S)» -0.65 and underestimate for S4 -0.65



Figure 3b)

Figure 4)

Figure 5a)

Figure 5b)
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(shown dotted), the prediction based on the location of the
peak of TC(q) versus q (shown solid), and the prediction
of an independent method (cf. II) based on minimizing an
approximate formof,é(qilwith respect to q (triangles).

The ordered phase wave vector squared versus S/R for the
case R = 1 for Ising, planar, and Heisenberg spins, based
on the location of the peak Tc(q) versus q. Also shown
for comparison is the mean field prediction.

The critical lines for the case R = 1 and varying S,

found by analyzing the susceptibility series for the
ferromagnetic phase, and the structure factor series

for the helical phase, for Ising, planar, and Heisenberg
spins. The curves are normalized by the value of T

at R4 and S*o . Also shown for comparison is the
mean field prediction. To make a fair comparison, we base
these three curves on analysis of fifth order series.
Successive estimates thor the exponent § , for fixed

R =1 and decreasing values of S, for the case of Ising
spins. Note especially the dependence of the estimates

on S. The largest estimates for § occurs when the
contribution to .§ (q) for.q # q, is a maximum (cf. fig. 1b),
and this occurs when S = -0.38.

Linearly extrapolating the curves of figure 5a gives a

or

xest £

better estimate for the exponent § . Shown is
R =] and varying S for Ising, planar, and Heisenberg
spins. From these estimatés a discontinuity in the exponent

value at the Lifshitz point is inferred (shown dashed).
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Iv. DISCUSSION
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9 THE CRITICAL REGION NEAR THE LIFSHITZ POINT

In our study of the R-S model, we have had difficulty
in interpreting series estimates for exponents‘as the
competing interaction S varies (cf fig. 9.1). It is
predicted that there exist two different sets of universal
exponents for the ferromagnetic and helical phases,
and this means that a step function discontinuity in an
exponent value exits at the Lsfshitz point (Droz and
Coutinho-Filho 1975, Garel 1976). However, series
analysis of the R-S model indicates exponent estimates
that vary continuously with S. 1In particular, we are
concerned with our estimates for the susceptibility
exponent in the ferromagnetic phasé. These estimates
increase dramatically as S is decreased from zero. A
similar continuous variation in exponent value is found
to occur in systems for which the relative values of certain
interaction parameters vary. Examples include: aniotropic
systems in which an anisotropy parameter varies (Oitmaa and
Enting 1971, 1972, Rapaport 1971, Paul and Stanley 1971,
1972 a) systems with further-neighbor interactions of
varying strength (Dalton and Wood 1965, Domb gnd Dalton 1966,
Bowers and Woolf 1969), and dilute ferromagnets of varying
dilution (Rapaport 1971, Rushbrooke 1971). It appears,

based on this past experience, and on results from this
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work, that the series results contradict universality.
However, a more careful analysis of lengthier series is
possible in certain systems, and it is found that

analysis of progressively lengthier series will eventually

show trends consistent with universality as sketched in
fig. 9.2 (Paul and Stanley 1972a,b). This snalysis was
important in providing a theoretical confirmation of the

univessality hypothesis.

Unfortunately, series for the R-S model are not long
enough to show trends that indicate universal exponents
'(cf fig. 9.2), and this is a potentially distressing result.
To address this situation, we wish to show two things.
First, we give a rough mean field estimate that indicates
that the critical region shrinks as S decreases, and
moreover, the number of series coefficients required to
probe the critical region becomes correspondingly largér;
Second, we analyze relatively lengthy series for the R-S
Hamiltonian in the spherical model limit, and we find
tfends in series estimaﬁes that are consistent with
universality appearing only at high order. From these
two pieces of evidence, we infer the validity of universality

for the R-S Hamiltonian.

To roughly estimate influence of the parameter S on

the size of the critical region, we proceed as follows.
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Starting with the expression for the structure factor

3(q), with q along the z-axis (see section 29,
-1

IRI+ %S 2
S(q) ~ [t * Be2IRWLS Y ] (9.1)

we find the correlation length in the z-direction to be

g = X\Q\»f %S ]"1 ’r.%"
z

"H'IIRHIS (9.2)

Consider first the case R=1 and S=0, the isotropic

system with nearest-neighbor interactions. For this case
~

we have §z=(6i)/l . As the temperature decreases the
correlation length grows, and wheng;is greater than some
value Eo, the asymptotic critical behavior becomes
evident. The temperature at which this occurs provides
an estimate for the size of the critical region. For
the sake of argument, suppose that £0=1. This gives

1

to=(6€02)— 1/6. With this estimate for the size of
the critical region we next consider the number of seriles

coefficients that are required to probe into this region

for the Ising model. When R=1 and S$=0, kTC/nyg.A.S

and therefore t 51—.£Ld££x~¢ 1/6, and this gives
o kT./J,,
kT /J v & x 4.5 = 5.4, At this temperature we wish to
o’ "xy 5

see how useful a 10th order series will be in determining

critical behavior. The susceptibility series 1is,
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X=1+0h, *30};; + 148 9;; to

where » I,‘ /kT
»“3 » (9.3)

- B -1 L
When 9%3— ny/kTo—(5.4) , the coefficients become,

x=1+1.114+1.034+0.94+0.83+0.73 0.63+0.55+
0.47+0.4140.35+... (9.4)
te 10'™ order

The partial sum consisting of the first ten terms is
8.05 while the infinite sum, based on
x= 1.02¢”5/% 4+ 0.006t”1/%+. .. Domb (1974) is 9.4, and
thus most of the contribution to tﬁe susceptibility is
contained in the partial sum. More importantly, this
partial sum behaves approximately as t;-'s/'+ for a range
of temperatures down to TO, and therefore it is natural
to expect that extrapolations based on series of order
ten will give reasonable results (cf figure 9.3).

Consider now the case R=1 and S=-0.2. 1In this case
the z-correlation length is £z=(28t)_1/2, while the

correlation length in the x-y plane is unchanged compared

to the case S=0. In order that three-dimensional
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. 3 K3 3 r\,
critical behavior is evident we must have €z>£o, and

. . - 24,1
this gives t, (2850)

=1/28. Thus a small reduction in §
reduces the size of the critical region by a relatively
large factor. It is now interesting to see how many
series coefficients are required to probe to t<to. From
our analysis we have found ch/nyg4'0 for S$S=-0.2, and

this gives kTo/ny=4.15. At this temperature we evaluate

the susceptibility coefficients to order eight.

X=1+5.69xy+25.283xy2+112.79xy3 (9.5)

=1+1.350+1.469+1.579+1.614+1.660+1.658+1.670
+1.650+.... (9.6)

The pattern in the coefficients suggest that many more

terms are required before a truncation becomes accurate.

We see that the first eight terms sum to 13.65, while our

analysis indicates an asymptotic form of X% 4,20 t.sl‘*+0(t.‘“),

which sums to 71.7 at t=1/28. At this temperature most

of the contribution to the susceptibility is not

contained in the first eight terms, and moreover the t

dependence of the eighth order partial sum is much different
5/¢

than t . Therefore not much reliability can be placed

on extrapolations of the eight term series.
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These rough estimates show that a small negative S
value substantially reduces the size of the critical region
compared to the case S=0. Of course, the actual numbers
that appear in our analysis are dependent on the choice of
g =1. However this does not change our conclusion that
as the critical region shrinks, correspondingly more
series coefficients are required to probe the critical
region and to provide accurate extrapolatiomns. Our arguments
should at least make plausible, the exponent estimates from

our series analysis for the R-S model.

In order to confirm our hypothesis, we analyze in
the next section, the R~S Hamiltonian in the spherical
model limit. ©For this system the exact solution can be
obtained, and moreover it can be shown rigorously that
universality holds in the ferromagnetic phase. Series
analysis of spherical model series shows trends consistent
with universality only at high order, and it is this result
that suggest that universality holds also for the Ising,

planar, and Heisenberg spin systems.
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Figure Captions
Figure 9.1

(a)

(b)

Figure 9.2

Figure 9.3
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Schematic dependence of an exponent on some

some parameter of the system, S for example.

A discontinuity in an exponent value at Po

shows up as a continuous variation, when using

estimates based on finite length series.

For some value p, less than but almost equal
. (2) .

to p_ , an exponent estimate ¥ might be

obtained from analyzing the first few series

terms by ratio methods. However, as more

(1)

terms are analyzed, and trend to X must

eventually occur. This behavior is shown

schematically in a ratio plot of the expo-

nent estimates.

Comparison of the n = 1 and n = ©@ successive
ratio exponent estimates XL , for R =1
and S = -0.15. The Ising series do not

appear to extrapolate to 1.25 (arrow).

This feature also occurs in the analysis of the
spherical model series. But for L2 20,
the estimates appear to be approaching 2.0.
This comparison indicates that perhaps 20 or
more Ising coefficients would be required to
see a downward trend to 1.25.

Comparison of the susceptibility, and a partial

sum of a finite number of series coefficients
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near the critical point. The dependence of
log X wversus log (THTC) becomes linear as
T—T_ , and the critical region may be defined
as the point where the linearity begins, The
partial sum is a good approximation at high
temperatures, but this approximation breaks
down at some temperature ahove Tc. If the
partial sum is accurate into the critical
region (the case shown), then reliable series

extrapolations may be obtained.
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10. EXACT RESULTS: THE R-S HAMILTONIAN IN THE SPHERICAL MODEL LIMIT
The ideas of the ptmvious section are best illustrated by analyzing
the spherical model 1imit of the R-S Hamiltonian for two reasons: First,
the qualitative features of the n = e@system are the same as the n = 1,2,
and 3 systems. That is, in the ferromagnetic phase, the susceptibility
exponent is 2 for all S (Joyce 1966), while at the Lifshitz point, which
occus when -JRl= 4S,the exponent jumps discontinuously to 4 (Hornreich
et al 1975a, 1976). Second, we can compute the partition function exactly
for this model, and consequently generate series of arbitrary length.
From the analysis of these series, we shall see that as the Lifshitz
point is approached, the number of series terms required to probe asymp-

totic behavior increases drastically.

SERIES GENERATION
Vle consider the R-S Hamiltonian in the spherical model limit for

arbitrary dimensionality d,

d- 2 22
?’("J-x(% S5 + R%SLS;,*-S% SLS3) (10.1)

where the first sum is over nearest-neighbor spin pairs in the same (d-1)
dimensional layer, while the last two sums are over nearest-neighbor and
next-nearest neighbor spin pairs along one axis (the z-axis). The spins

. 2
s, can assume any value s.< +eesubject to the constraint:asi = N, where
L

i i

N is the number of spins in the system. It will be more convenient to

rewrite (10.1) in the following form,

7’/‘ 2 lésus-

(10.2)
\.,) J
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where Jij is the interaction between spins located at sites i and j.
Most of the thermodynamic properties of this system are determined by the
location of the partition function saddle point, and this is given by

the condition (Berlin and Kac 1952, Joyce 1966),
-1
A ~» - - )
Z\Te;/\(;r'a‘)dja"’(lse ;313“5“"3@3:&
J

-
where j is the vector distance between the origin and site j, zsp is the

(10.3)

saddle point location, and the integral is over the first Brillouin zone.
We define 3‘523‘,;\ ond C(G)SZJ}S cosa-r/z I‘i , and now eq (10.3)
3 3 4

can be written compactly as,

i - > -t
I/kgT 1@};—)‘\ .i.s? So\w (1- f(w)/zsp) (10.4)

© ﬂ_‘?_} n
’(:).Ln)‘ iLs, ,,Z:, SAC; ( Zsp

32 Pa /?s:" (10.5)

nso

The last equality defines Pn’ and for the R-S model in d dimensions we

have explicitly,

(d-\) ¢+ RS J
(10.0)

N
P : A 3 Co3w,4 COSWa + - - -+ +CosWq.y + Reoswy + Scoslwg dwo
" (%)

and this integral may be evaluated directly,
The zero field susceptibility can be expressed in terms of the saddle

point as (Berlin and Kac 1952),

Y :(kﬁT/S) (25;"1)-1

Thus, to generate the high-temperature susceptibility series we need to

(10.7)

revert the series in eq (10.5) in order to express 1/Zsp as a series in
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J/kBT. That is, we have 213

0

2,002 2 Qa(3/kT)

n=o (10.8 )

Substitution of this series in eq (10.7) then leads to the desired result.

SERIES ANALYSIS

We now turn to the analysis of the three-dimensional susceptibility
series for the case R = 1 and values of S within the range 0 and -1/4.
The singularity structure of the raw series is similar to the singularity
structure of the n = 1, 2 and 3 raw series, but in addition there exists
another singularity on the positive real p-axis, more distant from the
origin than the physical singularity (cf fig. 10.1 ). Convergence of
Padé approximants to this additional singularity becomes progressively
"noisier" as S decreases, and hence the location of the singularity
becomes more uncertain. Successive ratio extrapolations are influenced
by this singularity (cf fig. 10.3,4), and therefore we shall study both
the raw series, and a corrected series which consists of the raw series
multiplied by ( 1-B/ﬂq‘;§v , Where ﬁ°44 and v are respectively the
location and exponent of the additional singularity.

Analysis of both initial series shows a trend to increasing exponent
estimated as S decreases (cf fig. 10.3%). However, guided by our results
found from analyzing the anisotropic Ising model (section 5 ), we
bilinearly transform both initial series, correct for the spurious
singularity, and look for a downturn in ration extrapolations.

Consider first the bilinear transform of the raw series. For the
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case S = 0, the successive ratio exponent estimates Xl approach 2

from below as R —be0 . As S decreases, the upward trend in the XL
become more pronounced, and this gives rise to the increasing estimates
foe the susceptibility exponent ¥ found previously (cf fig. 10.7a).
Analysis of these series gives only weak evidence that ¥ 1is universal
for negative S. However, a Padé analysis of these series shows a large
number of relatively strong singularities on the positive real p-axis,
and in the first and fourth quadrants (cf fig. 10.5 ). We have shown
(see section 4) that the trends found when extrapolating these series
are due to the influence of these non-physical singularities.

Now consider the bilinear transform of the '"corrected' series.

A Padé analysis shows that the strength of the additional singularities
on the positive P—axis, and in the first and fourth quadrants has been
substantially reduced (cf fig. 10.6). Therefore, series extrapolations
converge more rapidly to the physical singularity, giving rise to more
physical trends. The plots of X}_ versus /g now confirm universality

(cf fig. 10.7b). When S = O the {Qapproach 2 from above, and for small
negative S the !L first rise as R increases, and then as ﬂaincreases
further a downward trend occurs, analagous to the trends found in the
study of the anisotropic Ising model (cf section 5).

While this result confirms our expectations, it also demonstrates the
difficulty associated with analyzing R-S model series. Extreme care must
be taken to sufficiently isolate the physical singularity. Even when this
is accomplished, resultant trends in extrapolations are quite weak, and
caution must be taken in interpretation of analysis results. The extreme

weakness of the trends stems from the reduction in size of the critical
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region. As we have argued in the prévgkus section, asymptotic series
behavior is not evident until many coefficients are generated. It appears
that series of order 15 just begin to see the trend toward asymptotic
behavior.

To further understand the relation between the size of the critical
region and trends in series extrapolations, we also analyze the spherical
model susceptibility series in four and five spatial dimensioms. The
qualitative features of the four dimensional system are the same as the
three dimensional system, while in five dimensions there is the new
feature that the exponents are continuous at the Lifshitz point. This
occurs because the marginal dimensionality is 4.5 (Hornreich et al 1975)
and the system is therefore described by mean field theory.

For spatial dimension d, there exist competing interactions along one
axis, while there exists ferromagnetic interactions in (d-1) - dimensional
layers. Thus, as d increases, we expect that the influence of the
competing interactions on series analysis will weaken, and this is found
to be the case. In four dimensions the qualitative features of the analysis
are similar to those in three dimensions, except that the presence of
logarithmic corrections complicates the analysis somewhat. These correc—
tions represent a branch cut singularity along the real B -axis (cf fig.lo.8). ..
The effect of these singularities is to slow convergence of ratio estimates,
and in fact it is found that for the case S = 0, X50314+ (Milosevic and
Stanley 1971). 1In fact, for the case S = -0.15, for example, the
expected downward trend in the ‘L (cf fig. 10.9 ) does not occur until
order 25 in four dimensions compared to order 15 in three dimensions.

However, we stress #he important result, that the apparent S dependence of



ﬁ
the exponent estimates are more tgggj?en times weaker in four dimensions
than in three.
In five dimensions the S dependence of the exponent estimates is
even weaker still (cf fig. 10.10). Moreover, our analysis verifies that
that the marginal dimensionality at the Lifshitz point is greater than
four, but less than five. When S = -0.25, exponent estimates of the
four dimensional series indicate a value greater than one. (In fact,
the correct value is 4/3, Hornreich et al 1975a). However, in five
dimensions, an exponent value of 1 is clearly indicated (cf fig. 10. ).
In conclusion, the spherical model has proven to be an extremely
useful tool in understanding soﬁe subtle features of series analysis.
In particular, our analysis shows that as the size of the critical region
is reduced due to the effects of competing interactions, asymptotic
series behavior is delayed. Moreover, by analyzing series in spatial
dimension d, we have seen that the effects of the competing interactions
are reduced as d increases. For some 4< d< 5, these effects are suffi-
ciently reduced so that mean-field exponents now occur at the Lifshitz

point.
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Figure Captions

Figure 10.1

(a) - (o)

Figure 10.2

(a) - ()
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The singularity structure of the raw series for R = 1

and various S. Note the presence of both the physical
and antiferromagnetic singularities (denoted by f and

af respectively). Further singularities which are

evident in the Padé table are denoted by x's. Note the
presence of an additional singularity on the positive
real P -axis, close to the circle of convergence.

This singularity persists even after the bilinear trans-
form i performed, and ratio extrapolations are sub-
stantially influenced by this singularity (cf fig.10.3,
10.%4). It is interesting that as S decreases, convergence
of the Padés to the physical singularity becomes pro-
gressively "noisier", and moreover, the residue associated
with the physical singularity moves into the cémplex

B ;plane. It is also interesting to note that these S
dependent features are similar to those found in analysis
of the series for dilute ferromagnetism as the occu-
pation probability of magnetic sites decreases. When

S = -0.25, the Padés give no evidence of a singularity

on the positive real [ -axis.

The singularity structure of the '"corrected" series formed
) -Y

by multiplying the raw series by (1 - 3 /f,44) ~ where

ﬁ.“ and v are respectively the location and exponent

of the additional singularity on the positive real



Figure 10.3

Figure 10.4

Figure 10.5

(a),

(b)

Figure 10.6

(a),

(b)
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Successive ratio exponent estimates of the raw series
for R = 1 and various S. As S decreases, the antiferro-
magnetic singularity moves closer to the origin, while
the ferromagnetic singularity moves further away.

When S = -0.15, the two singularities are equidistant.
Consequently, for S < -0.15 the oscillations grow as L
increases.

Successive ratio exponent estimates of the "corrected"
series (see text), for R = 1 and various S. These are

substantially different than the estimates in figure 10.3.

The singularity structure of the bilinear transform

of the raw series, for R = 1 and various S. Under the
action of the bilinear transform, the interval (0,e0)
is mapped into (O, ﬁc), where 3¢ is the location of
the physical singularity in the raw series. Thus,

the additional singularity in the raw series has been
moved quite close to the physical singularity, and
further, its location has been somewhat smeared out

into the complex ﬁ-plane.

The singularity structure of the bilinear transform of
the corrected series, for R = 1 and various S. The
exponents associated with the additional singularities
evident in the figure, are considerably reduced compared

to the case shown in figure 10.5.



Figure 10.7

Figure 10.8

Figure 10.9

Figure 10.10
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Successive ratio exponent estimates for (a) the bilinear
transform of the raw series, and (b) the bilinear trans-
form of the corrected series. Note that for S = -0.15

a downward trend in the Xi occur for L > 1§ that is

more pronounced in (b) than in (a).

The singularity structure of a typical raw series in
four dimensions. The large number of singularities

on the real axis is indicative of a branch cut. These
singularities arise because of logarithmic corrections
in four dimensions.

The successive ratio exponent estimates for the bilinear
transform of the series for the four dimensional system.
When S = -0.15 a trend to ¥ = 1 occurs for R > 25,
while when S = - 0.25 the x'x appear to converge to

the predicted value of 4/3 (Hornreich et al 1975a).

The successive ratio exponents of the bilinear transform
of the five-dimensional series. Even for S =-0.25,

the KQ appear to converge to 1. Therefore, in five
dimensions, the exponents at the Lifshitz point are

mean-field like.
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11 Conclusion 238

In conclusion, this work is the first detailed numerical study
of a system which exhibits helical order. Prior to this work, only
a few limited theoretical results about this phenomenon existed. 1In
what follows we briefly outline the techniques we have used to study
helical order. We also review briefly previous knowledge in this
field, summarize our main results, and indicate how they add to
our existing knowledge (cf. fig. 11.1). Finally, we point out some
remaining open questions, and give some suggestions for future work.
The earliest studies, using mean-field theory, classified the
helically-ordered phases that occurred in various systems with nearest-
neighbor ferromagnetic, and further-neighbor antiferromagnetic
interactions. Recently, it was recognized that a new type of
¢ritical behavior exists at the boundary point between ferromagnetic
and helical order. The critical properties at this particular point
have been exhaustively studied using the renormalization group. In
the past two years, a system with nearest-neighbor ferromagnetic coupling,
and next-nearest neighbor antiferromagnetic coupling along one axis has
been intensively studied because this is the simplest system in which
helical order can occur. We have called this model system the R-S
model. The renormalization group has been used to calculate the
exponents of the helical phase, while we have used mean-field theory

to map out the phase diagram in detail.

Summary of the Present Work - Series Generation

High temperature series coefficients are determined by summing
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classes of lattice graphs. The bonds éf these graphs represent the
interactions between the spins at the endpoints of each bond. The
competing S interaction is equivalent to a new bond in the z-direction

of length 2, which couples fourth nearest-neighbor spins (cf. fig. 11.2a).
This feature gives rise to a much more complicated lattice graph

topology. Previous series studies have been limited to systems with

at most third neighbor interactions.

These new complexities are most efficiently accounted for in
linked-cluster theory, in which the S interaction is introduced as an
additional lowest order bond factor (cf. fig. 11.2b). This modification,
in practice, involved the generalization of a computer program based on
linked-cluster theory, so that series can be generated for a system with
up to fourth-neighbor interactions. From this, series at any point in
the R-S parameter space can be calculated. Previous results existed

only along the R or S axes (cf. fig. 11.3).

-General Polynomial Series

Becouse of these graph-theoretic difficulties, it was imperative
to present the series in a form so that as many series coefficients as
possible could be checked against known results. The importance of
thorough checks for the accuracy of the series cannot be understated.
There have been many cases in which published series have been later
shown erroneous. To apply the checks, each series coefficient is
first written as a sum of contributions form different classes of
graphs which contain the same number of ny, R, and S bonds. That is,

the high-temperature series, for the susceptibility for example, is



242 FIG L2 &)

dhne wwherackion between spins

Scpeuh.\tc\ B\/ two \athce spai.\nbs

i dhe z-diveckion ;18 an
[ Wnterackion Detrween w©+®
nearest Aé\s\\oors.

——

l o ’ 3"1 nearest ne.\gs\x\;ors

|
| =T
'b\

nearest- neiahbers

—

2nd Nneares k_ V\e'\s\')bors

“~— 4™ nearest néub\skors

k)
1’\(‘_ \omes*\' order Bc:vui Qac*bfs
b ¢ for twe RS whodel thal are
tevaked i Liaked clustenr
S Jt'\neory
I
— R




2o
* o
» e

ons ctrapic W\_a_%nct

mekqmg%_n&t ansotropic Ma%m.t

meka mg%ne.t

F\G 11.3

Previous series work  was enly Lor
evther R:=0 or Sto. Our series

work s over the ewtire R-S plane.



.
expressed as X=) A,, (J /kT)RRJSk. Thig%r"écedure involved generating
& Ik Xy
series for (L+1)(L+2)/2 linearly independent combinations of ny, R, and
S, and then solving [(L+1)(D+2)/2]2 simultaneous linear equations to
determine the A, to order L.
ik
For the Ising series, it is more useful to express the variable
J/kT in powers of the nearest-neighbor linear chain correlation func-
tion, tanh(J/kT). That is, by an appropriate transformation procedure,
the triple power series was re-expressed as XfZ;?ijtanh(ny/kT);gok,
WL
where pmtanh(JZ/kT)/tanh(ny/kT) and oztanh(J;/kT)/tanh(ny/kT), and
each Bjkl becomes an integer. This form is useful because: a) the
high~-temperature series for any ny, R, and S may be obtained by simple
substitution, and many orders of computer time are saved by this method,

b) by tabulating the Ajkl (or B the series is presented in a form

jkl)’

that others may use directly, and c¢) a large fraction of the Ajkl or

Bij can now be checked against known results. One type of check is
obtained from studying special limiting values of ny, R, and S. A

further-reaching checking prodcedure is described next.

-Rigorous Results

We have derived new rigorous results which relate the Ajkz

(or Bjkl) to powers of exactly known two-dimensional series coefficients.
ZX 2 ceenyY 3
For example, we showed that 3 /SRSSiR;S=O =8ny [X(R—S—O)] , and this

verifies the coefficients A and B Only when these checks were

112 11¢2°
applied, was it possible to proceed confidently to a study of the helical

phase.



-The Helical Phase and the Lifshitz Point 245

Our analysis of the helical phase is the first verification, by high-
temperature series analysis, of a spin-structure with an ordering wave-
vector that is incommensurate with the lattice. The order parameter is
thus a periodically varying magnetization with an associated wave vector
g » . b i d
- Therefore the structure factor,g(q) diverges at TC for 9=q» and

. ] . ﬁ “ 3 3 3
remains finite for all q#qo. In order to study this phase transition,
—p
q, must be located, and therefore we have generated and analyzed structure

. - . - -
factor series for arbitrary q. It is the q-dependence of.g(q) that

determines the nature of the phase transition.

In the helical phase, we have found that E;: a) is temperature
dependent, and b) differs substantially from the mean-field prediction
{as‘=cos-1(—)Rl/48) near the Lifshitz point. This is the first pre-
diction that E; disagrees with the result of mean-field theory.

The Lifshitz point may be found by varying the values of R and S
so that q6d0. This method was found to be somewhat imprecise because
the structure factor peak broadens near the Lifshitz point, and con-
sequently, the location of the peak could not be accurately determined.
We therefore developed an alternate criterion for locating the Lifshitz
point, based on locating the minimum of,g(a)_l, when it is written in
an approximate form for small a. Thus, if48(a)_l is expressed as
A+ qu + an + -+ « , it is evident that.agéo when B=0, since Eg
is playing the role of an order parameter in a Landau-like expansion.
The condition B=0 was found to locate the Lifshitz point accurately.

This is the first calculation, other than simple mean-field theory,

for the location of the Lifshitz point (cf. fig. 11.4).
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~-Exponents 2 4 "I’

The most difficult feature of the analysis was the determination
of the exponents. As R and S vary, a naive analysis indicates
continuously varying exponents, but this feature is to be expected
from analysis of finite-length series. What is disturbing, however,
is that exponent estimates appeared to worsen progressively as more
lengthy series were analyzed. Such a phenomenon alsc occurs, for
example, in the study of series for dilute ferromagnetism, and the
understanding of this feature remains an outstanding unsolved problem
as yet. We have attempted to partically understand this problem by
the following work:

First, as a preliminary, it must be ascertained whether trends
which appear in series extrapolations are physical. By physical,
we mean that the order-by-order trends in exponent estimates are the
same as the trends that would be measured experimentally as T approaches
TC from above. This equivalence is due to the fact that progressively
lengthier series effectively probe closer to Tc‘ This preliminary
is important because we have shown that trends in extrapolations are
dependent on the presence of additional non-physical singularities
in the complex R - plane. Therefore, in order to study trends
associated with only the physical singularity, it is necessary to either
remove these non-physical singularities, or transform them far from
the origin. This point is widely appreciated in principle, but not so
widely exploited in practice.

To test our ideas, we first developed a series analysis method that
isolates the physical singularity, and we then applied this method

to the S = 0, R ¥ 0 three-dimensional Ising series. A naive analysis



indicates exponents that vary continuously asziﬁéégnisotropy strength
R varies. Only when our method is used,do the trends in extrapolations:
a) agree with physical intuition, and b) give evidence for universal
exponents, independent of the anisotropy strength. Finally, when the
method was applied to the R-S model series, the disturbing trends

found by the naive analysis persisted. This procedure confirmed that
these trends are physical.

Having established this fact, we then argued that this feature is
reasonable because the critical region shrinks as the competing inter-
actions come into play, and correspondingly more series terms are re-
quired to probe asymptotic behavior. To test this argument, a system
is required in which: a) the qualitative features of the R-S model are
reproduced, and b) very lengthy series can be generated. The spherical
model limit of the R-S Hamiltonian satisfies these criteria, and there-

fore we studied this system in detail.

-Exact Results

We derived an exact solution for the spherical model partition
function in any dimension, when the competing interactions of the R-S
model are included. From this exact result, series of arbitrary
length may be readily generated. Analysis of the spherical model
series revealed trends in the exponent extrap olations at low order
as the Ising, planar, of Heisenberg model series. However, at much
higher order, the analysis eventually shows trends that are consis-
tent with universality (cf. fig. 11.5). The order at which this
occurs is a measure of the reduction in size of the critical region

as R and S compete. It is only from the analysis of the spherical
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. ol
model series, that universal exponents can be inferred for the R-S model

for Ising, planar, or Heisenberg spins.

Suggestions for Future Work - Theoretical

Further high-temperature series studies of systems which exhibit
different types of Lifshitz points and helical phases would greatly add
to our general understanding. Specific model systems amenable to

analysis include:

1) An Ising system in which the wave vector of the helical phase is
perpendicular to the spin axis. Such a configuration arises from the

following set of interactions:

Jiv0
: ...__.:élc’.“/j.wo 2 [t
.,_.___,___7’\ _______ 1 | 4 l

b
7
9.

where JX' is a competing interaction in the x~direction. It would
be intersting to compare the properties of the helical phase for the
two cases of a longitudinal and transverse wave. From this, we may
gain insight into the role that parallel and perpendicular aniso-

tropy play in determining the properties of helical order.
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2) A system with both second and third ﬁéighbor interactions in the
z-direction.

There exist particular values of R,S, and
T such that the coefficients of qz2 and qz4 in
3 (q) are zero gsimultaneously, and this produces

a "higher order" Lifshitz point. A simple mean

S

—_— 0

JR)O

field calculation shows planes of Lifshitz °

boundaries intersecting at lines of '"higher order" Lifshitz points.

3) A system in which there exists competing interactions in two
difterent directions.

For this system there exist certain values of the interactions so
that the coefficients of two components of q2 are zero; a 'biaxial"

Lifshitz point.

(‘“"‘*’ L J.x,")

® k4 9e
z I
®
° t x
. v

The helical phase of this system exhibits periodicity in two directions.
Mean-field theory again indicates planes of "uniaxial" Lifshitz
points meeting at a line of "biaxial" Lifshitz points.

In view of 2) and 3) it may be very useful to classify the phase
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diagrams of higher order Lifshitz points in a manner analagous to the

study of higher order critical points.

~-Experimental

The greatest advance in our understanding might be provided by
new experiments. We suggest two experiments which can test the
applicability of the R-S model, or any model with competing interactions,
to describe real materials which exhibit a transition between ferro-
magnetic and helical phases. The only example presently available is
the U As,.»Sx system found by Lander et al (1972).

First, measurements of the structure factor exponent as the
system varies from a ferromagnetic to a helical phase could be
compared with our predictions. Of particular importance, in light of
our analysis, is the behavior of the exponent near the Lifshitz point.

Most importantly, measurements of the small q dependence of $(q)
at the Lifshitz point can provide information regarding the details
of the interactions that give rise to helical order. If the mechanism
for helical order is competing interactions, as in the R-S model,
then é(q) must vary as an-O(q) for small q. An experimental test

of this prediction is therfore of utmost importance.
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THIS PRJOGRAM COMPUTES THE GENERAL PDLYNOMIAL SERTES IN JUXYeJZ/JIXY,
ANC JZF/ZJUXY BNDC ALSO IN TANHFOIXY ) TANHOJZ)/TANH{JIXY),
TANH({JXxY) FCR ANY THERMCOYNAMIC FUNCTICN GENERATEC IN A +IGF

TEMPERATURE (1/7) SERIES EXPANSICN

M-1 IS THE CRDER CF THE SERIES WRICH ARE READ IN
NMAX 1S THE CGRCER TO wWHICH THE GENERAL PCLYNCMIAL SERIES

CALCULATED

IMAX IS THE NUNEFR OF SERIES WHICH ARE READ IN...
DIMENSICN XSUS(11,66)93XSERZ(114€6A),4XSERZ4(11,66)

CIMENSICN CHI(66),2ISCLE6),24THEG)

DIMENSICN SLS(664+11),5FR2Z(€66,11),SERZ4(66,11),D{11,66)

CIMENSICN CCEFF(€6,11,11)
DIMENSICN AJXY(5C),AJZ(50),AJZP(50),TRUN(50)
DIMENSICN S(5700),55(5Q000)

NDC 18 I=1,11

DC 18 J=1,¢€¢

XSusS(l,J)=c.cCn

XSERZ(T1,J)=C.000

D(I,J4)=C.GCCC

XSERZ24(1,J)=0,0DC

p=0

NMAX=18

IMAX=50

MN=ANVAX+]

DO 1 I=1,INMAX

READ(5,100) IRUN(T)

REAC(S,102) AJIXY (1) AJZ(T),A0ZP(T)
READ(5,101) (SUS(IT,IC),IC=1,V)
READ(S4101)(SERZ(T,IC),IC=1,M)
READ(5,101)(SFRZA(T,IC),IC=1,M)
WRITE(6,2C0C) TRUNLT)JAIXY(T),AJZ(T),A0ZP(])
WRITE(E,2CE)

DO 2 K=1,¥

Kl=K-1

2 WRITE(642C1) X1y SUS(I4K)»SERZ(T4K)SERZA(T,K)

1

CCNTINUE

IMAX MUST BE >

ANC TANH(JZP)/

O

MATANOONL
MAINCCO2
MAINOOO3
MATANOONS
MAINCOOS
MAINOOO6
MAINOOCT
MAINOOCS8
MAINCOO9
MAINOOLO
MAINOO11
MAINQO12
MAINOQOL3
MAINOOl14
MAINOCO1S
MAINOO16
MAINOOL7
MAINOOL18
MAINOO19
MAINOO20
MAINQO21
MAINOO22
MAINOD23
MAINCO24
MAINOO25
MAINOO26
MAINQOZ27
MATINOCOC28
MAINOO29
MAINCO3O
MAINCO31
MAINOO32
MAINOD33
MAINQOO34
MAINCO3S
MAINCC36



eEaEeEaNel

5
4

THIS SECTICN REARRANCES THF CATA
THE J'S ARE ARRANGEC INTH
CCMRINATICAS
THE SFRIES CCEFFICIEANTS CF CIFFERENT RUNS 8UT SAME CRDER ARE ARRANGFOD
AS VECTCRS

BO 3 I=1yMN

[MAX=T*(1+1)/2

[UMAX=MAX%*2

DG 4 J=1, IVMAX

CHI(J)=SUS(J, 1)

ISQUJ)=SERZ(J, 1)

Z4THE(J)I=SERZ4( 4y 1)

DC 5 Il=1,1

DO 5 12=1,!1

[F(I1+12.GT.I+1) GG TG S

COFFF(Js 11, I2)=AdXY(J)2X(I-T1-T12+1)%AJ2Z(J)*%{[1-1)
1¥AJZP () *%{12-1)

CONTINUE

CONTINUE

1J=0

DO 6 L=1y1

DN 6 M=1,1

DC 6 K=1,1NMAX

IF(L+M . GT. 141} GC TC 6

IJ=1J+1

S{IJ)=CCEFF(K4L,yM)

SS(14)r=S(1)

INTC THE FQORM REQUIRED 8Y SIMO
A MATRIX, FACH RCw BEING ALL THE POSSIBLE

CONTINUE

THIS SECTICN SCLVES THE SIMULTANEOUS EQUATICNS NEEODED TC GENERATE THE
POLYNOMIAL SERIES

CALL SIMQ(S+CHI,IMAX,KS)

IF(KS.NELL) GC TC 7

ERITE(&,ZG?) I 0
CONTINUE .

DO 13 1J=1,T1JMAX

CF PCWERS OF J*S LP TC A CERTAIN CRDER FCR A GIVEN RUN ANUMBER

MAINOO3T7
MAINOO3R
MAINOO3Q
MAINCO4C
MAINQOO4]
MAINOD42
MAINQOO43
MAINQOO44
MAINOO4S
MAINQO46
MAINQOO47
MAINOO48
MAINOO49
MAINOOSO
MAINOOS1
MAINQCS52
MAINOO53
MAINOOS4
MAINCOSS
MAINOCS6
MATNOOS7
MAINOOSS8
MAINOOS9
MAINOQOG60
MAINOO61
MAINOO62
MAINCO63
MAINOOG4
MAINOC6S
MAINOO6S
MAINOOG67
MAINOC6S
MAINOOG9
MAINOOT70
MATINOCT1
MAINQOT2



OO0

13 S(1J)=SS(1J)

CALL 51TMQ(S,25Qy IMAX,KS)

D0 14 1J=1,1J"AX
14 S(I1J)Y=SS(1J)

CALL STIMQUS,Z4TH, IMAX,KS)
12 CCNTINUE
NCW THFE SERICS ART REARRANGELD INTC A FCRM SUITABLE FOR CUTPUT
DO 8 K=1,1MAX
XSUS(T,K)=CHI(K)
XSERZ(I,4K)=2SC(K)
XSERZ4(I4K)=Z4TH(K)
CONT INUE
CCNTINUE

TRANS CALCULATES THE GENERAL PCLYNCMIAL SERIES IN POWERS OF

w

TANH(J'S), GIVEN THE GENCRAL PCLYNCMIAL SERIES IN POWERS CF J*'S

SUTPLT THEN WRITES QUT THE SERIES BOTH ON PAPER AND CARDS
CALL TRANSF(XSUS,DyNMAX)
IFN=1
CALL CUTPUT(XSUS»0sMNyIFN)
CALL TRANSF(XSERZ,D,NMAX)
[FN=2
CALL CUTPUT(XSERZ,DsMN, IFN)
CALL TRANSF(XSERZ4,CyNMAX)
[FN=3
CALL GUTPUT(XSERZ44DyMNyIFN)
107 FCORMAT(I3)
101 FORMAT(3D24.16)
102 FORMAT(3D12.5)
2CC FCRMAT(//1X,'SERIES FCR RUN NUMPER ', 13,°*
1 JZ='4yD12.5" JZP=%,C12.5)
201 FORMAT(6X,12,T274D26.169T64,D264164T95,026.16)
206 FORMAT(/1X,'SERIES TC CRDER', T35, SUSCEPTIRILITY',T75,'<7%%2>",
17108, "<Z%%4>1)
207 FORMAT(/1X,' THE SGLUTIGN IS SINGULAR AT GRDER',16)
STCP
END

JXy=? yDlZ-Sy

MATINOOT73
MAINOOT74
MAINOOTS
MAINQOT76
MAINOOT77
MAINCOT8
MAINCOT79
MAINOOBO
MATNCOB1
MAINQOB2
MAINOOB3
MAINOOR4
MAINOOBS
MATINQOB6
MAINOO8BT
MAINOORS
MAINCOS89
MAINOOSO
MAINOCO1
MAINGCO092
MAINOOQOS3
MAINOOS4
MAINGCO95
MAINGCO96
MAINOO9Y
MAINQOO98
MAINOOS9
MAINO10OO
MAINOL1O1
MAINO102
MAINO103
MAINCLCA
MAINO10O5

0D MAINO106
CT MAINOL1O7

-

MAINOLO8



20

30

35

40

50

55

SUBRODUTINE SIMO(A,B,N\N,KS)
IMPLICIT REAL*¥8(A-H,(-17)
DIMENSICN A(2509),2(5"7)
TOL=C.0

KS=0

JJ=-N

DO 65 J=1,N

JY=J+1

JJI=JJ+N+]

RIGA=0

1T=4J-J

5o 30 lszN

1J=1T+1
IF{CA8S{(BIGA)-DABS{A(TIJ))Y) 20,3C,30
BIGA=A(TIJ)

IMAX=1

CONTINUE
IF(CAPS(BIGA)Y-TOL) 35,35,4C
KS=1

RETURN

I1=J+N%(J-2)

IT=IMAX-)

DO 50 K=J,N

I1=11+N

12=11+1IT7

SAVE=A(TI1)

A(Il1)Y=A(12)

A(I2)=SAVE
A(TL)=A(T1)/RIGA

SAVE=2( IMAX)
RIMAX)=8B(J)
8({J)=SAVE/PIGA

IF(J-N) 55,70,55
[QS=N%(J-1)

D0 ES IX=JY N

[XJ=1CS+1X

’.Gg

SIMGQ0Q01
SIMEo0C2
SIMQCCco3
SIMCC004
SIMC0005
SIMQ0006
SIMQ0007
SIMQO0008
simgooe9
SIMQco1l0
SIMQ0011
SIMgoet2
SIM00013
SIMGOO14
SIMCOC15
SIMC0016
SIMGQOL7
SIMCO018
SIMC0019
SIMQ0020
SIMQ0021
SIMC0022
SIMQ0023
SIMQO0024
SIMEC0025
SIMQ0026
SIMQ0027
SIME0028
SIMC0029
SIMGCO30
SIMC0031
SIME0032
SIMQ0033
SIMC0034
SIME0035
SIMQQ036



60
65
7C

80

[T=J-1X

DO 60 JIX=JY 4N
IXIX=NR(JIX=1)+1X
JIX=IXIX+IT
ACTXIX)Y=A(IXIXI=-(ACIXIYRA(JIIX))
BIX)="(IX)-(REIVXALIXI))
NY=N-1

[ T=N%®N

DO 80 J=1,ANY

TA=17-J

IR=N-J

IC=N

DO 80 K=1,J
R(IBI=B(IB)-A(IAYXR(IC)
ITA=1A-N

IC=1IC-1

RETURN

EN

“Gg

SIMQON37
S1MQo03s
SIMQO0039
SIM00040
SIMEN04]
SIMGC042
SIMGQ043
SIMC0044
SIMQ0045
SIMQ0046
SIMC0047
SIMQ0048
SIMQO049
SIMC0050
SIMQ0051
SIMQ0052
SIMQ0053
SIMQO0S4



SUBRCUTINFE TRANSFISFRIES,CyAMAX) TRNSOOO1
THIS RCUTINE TRANSFCRMS THE VARIABLES IN A TRIPLE FCWER SERIFS FCR A TRNSOCC2

10

THERYCCYMAMIC FUANCTICA FRCNM PCWFRS OF J/KT TC TANH(J/KT) TRNSC003
IMPLICIT REAL%B(A-H,C-7) TRNS0004
CIMERNS TGN SERTES(LLe€f)sAl11911,11)4P(11y11,11)4C(11466) TRNS0005
DIMENSICN TRANS{11),SERI(11)ySERJI11),SERK(11)PTHSER(LL) TRNSOGC6
MN=NMAX+1 TRNS0QO7
DC 10 I=1,11 TRNSO008
DO 10 J=1,66 TRNSC009
C(1,4)=C.COC TRNSCO10
DO 1 I=1,11 TRNS0011
TRANS (1)=0.000 TRNS0012
D0 6 I=1,11 TRNS0O13
DO 6 J=1,11 TRNSO014
00 6 K=1,11 TRNSO01S
A{I,d,K)=0,CD0 TRNSOOL6
B(IyJsK)=C.CDO TRNSO0017
DG B I=1,MN TRNS0018
IK=0 TRNS0019
0O 8 J=1,I TRNS0020
DO 8 K=1,1 TRNS0021
IF(J4K.GT.T+41) GC TO 8 TRNSON22
[K=1K+1 TRNS0023

A(T,JsK) IS THE COEFFICIENT CF JXY#%(I-1)%JZ%%(J-1) TRNS0024

%£J7P%%(K-1) TRNS0025
A(T=J-K+2,0,K)=SERTES (I,1K) TRNS0026
CONTINUE TRNS0027
TRANS(1)=1.C00 TRNS0028
TRANS(3)=1.£D0/3.0D0 TRNS0029
TRANS(5)=1.CD0/5.000 TRNS0030
TRANS(7)=1.C00/7.000 TRNS0031
TRANS{9)=1.CD0/9.0DO TRNS0032
TRANS(11)=1.00C/11.0C0 TRNS0033
DG 7 I=1,MN 0o TRNS0034
DC 7 J=1,MN i TRNS0035

2

DO 7 K=1,¥N bt TRNS0036



[F(I+J+K=-2.GT.MN) 50 1O 7
DI=DFLCAT(I)-1.0

DJ=DFLCAT(J)-1.9

CK=DFLCAT(K)-1.0

CALL SERPTH(TRANS,CI,PTHSER,NMAX)

DC 3 L=14"N

SERI(L)=PTHSER(L)

CALL SERPTH(TRANS,DJsPTHSER,NMAX)

ODC & L=14MN

SERJIL)=PTHSEZR(L)

CALL SERPTH(TRANS,DK,PTHSER,NMAX)

NC 5 L=1,MN

SERK(L)=PTHSER(L)

IMAX=MN-1

JMAX=MN-J

KMAX=MN-K

IF(IMAX.LT. 1) IMAX=1

[FIIMAX.LTL1) JMAX=1

ITF(KMAXLT.1) KMAX=1
IF((IMAX+1)/2.FQ.IMAX/2) INMAX=INAX+]1
[IF{(IMAX+1) /2. EQ0LJMAX/2) JMAX=JMAXH]
IF({KMAX+1)/2.EQ.KMAX/2) KMAX=KNMAX+]
CO 2 L=1,IMAX,2

DN 2 M=1,JMAX,2

DG 2 N=1yKMAX,?2

RB(IyJyK) IS THE COEFFICIENT CF TANHOJIXY)**(I-1)*TANH(JZ)**(J-1)

*TANH(JZP)**(K-1)

BlI+L=19J4M=1,K+N=11=B(I+L-1,J4M-1,K+N=1}+A(T,JyK)%SERI(L)*

1SERJ(M)IXSERK(N)

2 CCNTINUE

T CONTINUF

DG 9 I=14MN

IK=0

DO 9 J=1,1

DO 9 X=1,1
[F{J+K . GT.I+1) GC TO 9

(9¢

TRNSO037
TRNS0N38
TRNSOO039
TRNSO040
TRNSQ0041
TRNSGO42
TRNS0043
TRNSOO44
TRNSON4S
TRNSQ046
TRNS0047
TRNSOO48
TRNS0049
TRNS0O0S50
TRNSOO0S1
TRNSOCS2
TRNS0053
TRNS0054
TRNS0055
TRNS0056
TRNSCOS7
TRNS0058
TRNSQO059
TRNS0060
TRNSO0061
TRNSCO62
TRNS0063
TRNSO0O64
TRNS0065
TRNSQC66
TRNSCO67
TRNS0068
TRNSO0069
TRNSOO70
TRNSOO71
TRNSO0OT72



9

IK=1K+1
ClTIKI=3(I-J-K+2,J,K)
CONTINUE

RETURN

“ND

196

TRNSO0073
TRNSQO074
TRNSOOQTS
TRNSOO76
TRNSOO077



SURROUTINE SERPTF(SER,P,PTHSER,NVAX)
SERPTH RAISES A SERIES TC THE PTH PCWER TC ORCER NMAX
THE FIRST CCZFFICTIENTY CF THD SERIES MUST BE NGNZERC

IMPLICIT REAL*8(A-H,C-2)

DIMEASICN SFR{11),A(11),B(11),PTHSER(11)

D3 2 I=1,11

2(11=0.000

A(I)=C.C0DO

MN=NMAX+1

A(1)=0.000

B{1)=SER(1)**P

D0 1 I=2,MN

A(T)=SER(I)

C=DFLOAT(1)

S(I)=P(I-1)%(P-C+2.0C0)/(DFLOAT(I-1)%*SER(1))

CALL TFCRM(B,A,PTHSERyNMAX)

RETURN

FND

496

SRPTOON1
SRPT0002
SRPT0003
SRPTOCO4
SRPT0005
SRPTO006
SRPTO007
SRPT0008
SRPTQCO09
SRPTO010
SRPTOO011
SRPTOO012
SRPT0013
SRPT0014
SRPT0O15
SRPTOOL6
SRPTOOL7
SRPTOO18



OO0

SUBRCUTINE TFLRM(SCRA,SFRE,,STRC,NMAX)
PURPQOSF
IF
FIX)=SERA(1}+SERA(2)*X+4. o o« +SERA{NMAX+]1)E*XXENMAX
G(IX)=SERP(1}I4+SERP(2)*% X+, o o« +SERIB(NMAX+]1)EXEENMAX
THEN TFORM CALCULATES
FIG(X))I=SERC(L)+SERC(2)%X+e o« o +SERC{NMAX+]1)*X%XENMAX
IMPLICIT REAL*8(A-H,C-2)
DIMENSICN TVILL) 3”VI11)yNV(11)eTT(L1),SERA{L1L1),SERB(11),SERC(11)
1,AFACT(11)
DO 9 I=1,11
SERC(I)=0.0C0C
9 TT(1)=C.0DO0
NN=NMAX +1
BO 1 I=1.AN
SERC(I1)=0.0
AFACT(1)=1.C
DC 2 I=1,NMAX
2 AFACT(TI+1)=CFLOAT(IV*AFACT(I)
IVINN)I=C
MV (NN) =0
NVINN) =0
TTI(NN)=1.0
KMAX=NN
3 DO 4 K=2,KMAX
J=KMAX-K+2
IviJ-1)=0
IF(IVIJ).EQ.N) GC TC S
TT{J=-1)=TTUJIRSERBIII*XIVIJ)/AFACTIIVIJ)+1)
GG 1O 6
TT{J-1)=TT( Q)
NVIJ=-1)=NVvIE ) =IVES)*([J-1)
MV (J-1)=MviJ)-TV(J)
PRCD=TT(1)
NSUM=1-4V (1)
MSUM=1-MV (1)

[

Hom

96

}0

TFRMOOO1L
TFRM0002
TFRM0003
TFRMO004
TFR¥00O0DS
TFRMCCO6
TFRMOOO7
TFRM0OOOS
TYFRMCOO09
TFRM0OO10
TFRM0O011
TFRMQOO012
TFRM0013
TFRMOOL 4
TFRMQOOL5
TFRMCO16
TFRMOOL17
TFRMOOLS8
TFRMOO19
TFRM0020
TFRM¥0021
TFRM0022
TFRM0023
TERNMOC24
TFRM0025
TFRM0026
TFRNMDO27
TFRM0028
TFRMQ029
TFRMOO3O0
TFRM0031
TFRM0032
TFRM0033
TFRM0O034
TFRMOO0O35
TFRM0036



104
1C5

IF(NSUMGTNN) GO TO 7

I[F (NSUMJLE.O) WRITF(6,104)

[F{MSUMLT.C) WRITE(6,105)
SERC(NSUM)I=SERC(INSUM)+SERA(MSUM)*AFACT (MSUM)%*PRCD
DC 8 I=2,NN
IECCIVIII#1)*(TI-1)-AV(I)GT.NMAX) GC TC 8
IVII)=IV(I)+1

KMAX=1

S5C 1O 3

CONT INUE

FCRMAT(1X,' NSUM IS LESS THAN ZERQO')
FORMAT(1X,' MSUM [S LESS THAN ZERQ')
RETURN

SND

93

TFRMO037
TFRM0038
TFRMO039
TFRNMOO4O
TFRMQ041
TFRM0OO042
TFRNM0OO43
TFRMOO4 4
TFRM0045
TFRMO046
TFRMQ047
TFRM0048
TFRM0049
TFRMO0S50
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SUBRCUT INFE CUTPUT(YSERGZSERMNy IFN) OuT 0Nl

IT“PLICIY REAL*B(A-+H,C-17) guY 0002
CIMENSION YSER({11,F6)4ZSER(LLy6€)+FUNCIL1196642) GUT €003
DIMENSICN IP(E6)I0lE5) GUT 0004
DIVENSICN FACTNI(3) OuUT 0005
DATA FENCTN/PCHIY j 0 Z%%25 0, 1K Z%%4>1/ OUT 0006

THE FGRMAT CF THE PUNCHED CUTPUT IS . « o FIRST THE NAME CF THE QuT 0007

SERTIES IS PRINTEC 4 THEN THE SERIES COEFFICIENTS FIRST IN PCwWERS CF OuT 0608
J'S ANC THEN IN PCWERS OF TANH(J'S). « « THE FORMAT IS THEE SAME AS OuUT C009
THE PRINTED CUTPLT BUT THE PCWER CF EACH CCEFFICIENT IS NCT PUNCHED OouUT 0010

THEN A BLANK CARD IS PUNCHED CuT 0011
WwRITE(6,100) FENCTNCIFN) OuT 0012
WRITE(7,1C3) FNCTN(IFN) Ut 0013
DO 1 I=1,11 OouUT 0014
DO 1 J=1,66 OuT 0015
FUNC(I,Jy1)=YSER(I,J) OUT 0016

1 FUNC(T4J42)=ZSER{I,+J) QuT 0017
DT 2 IX=1,2 ouT 0018

N0 2 I=1yMN OUT 0019
IMIN=I-1 OuT 0020
IMAX=I*(1+1)/2 OuY 0021
IK=0 guUT 0022

DO 3 L=1,1 OuUT 0023

DC 3 M=1,I1 OouUT 0024
IF(L+“.5T.1+1) GC TO 3 OUT 0025
[K=1K+1 QuT 0026
IP{IX)=L-1 OuUT or27
[QUIK)=M~-1 OUT 0028

3 CONTINUF ouT 0029
WRITE(T9y102)(FUNCITJsIX)yd=14INMAX) _ ouT 0030

2 WRITC(64,1CL) IMING(FUNCITJ,IX),IP(JY,1C(J)sd=1,IMAX) ouUtT 0031
WRITE(T7,104) ouT 0032

100 FORMAT(//1X,*' THE GENERAL PCLYNCMIAL SERIES IN JUXY,R,S FOR ', ouT €033
LA7,*IN THE FIRST LIST,'/' AND IN TANH(JIXY),"', guT 0034
2'R=TANH(JZ) /TANH{JXY) ,S=TANF(JZP)/TANF(JXY) IN THE SECCNOD LIST') &) OuUT 0035
101 FCRMAT(/1X, "SERIES TC CRDER '412,3(C24.164," (RYXX',11,"')", o OUT 0036

L]
Y
4

¢



102
103
104

PPUS®xt, 11, )" )/15(019%X,3(D24.16,"
FCRMAT(3024.16)

FCRMAT (AT)

FCRMAT(LH )

RETURN

END

[REEY T 1, ¥) v, v {Skxt,11,%)')/))

99¢

ouT
ouT
CuT
cuT
ouT
ouT

0037
0038
0039
cC40
0041
0042
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