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Sidney Redner

Submitted to the Department of Physics
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for the degree of Doctor of Philosophy

ABSTRACT

We study, by using high-temperature series, the
properties of a model system which exhibits a transition
from ferromagnetic to helical order and a Lifshitz point.
The Hamiltonian is,

Txb - L -' 'Zs .s,

where the first two sums are over nearest-neighbor spin
pairs in the same and adjacent x-y planes respectively, and
the third sum is over next-nearest-neighbor spin pairs in
the same and adjacent x-y planes respectively, and the
third sum is over next-nearest-neighbor spin pairs along the
z-axis. This model, which we call the R-S model, simulates
some of the features of real materials which exhibit helical
order and a Lifshitz point.

From the two spin correlation function, the series for
the structure factor 8(4) are calculated for arbitrary a to
order 8, 6, and 5 for Ising, planar, and Heisenberg spins
respectively (n=l, 2, and 3).

In the ferromagnetic phase the susceptibility (.(q=0))
series is expressed as a polynomial in Jxy/kT, R, and S. In
this form an important class of the coefficients may be
checked by the application of new rigorous results which
relate derivatives of X with respect to R and/or S to powers
of the two-dimensional susceptibility. From the analysis of
the susceptibility series, scaling in the two parameters R
and S is verified, namely that •t•, "H, ,1ShG(THK)
where a =as=14/5.
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The Lifshitz point is accurately located by minimizing

an approximate form for ) that is valid for small q;

where <z >E:<sosr>Zn is the z-moment of the two-spin
correlation function. To this endhigh temperature series
for <z2 > and <z4> are calculated in a general polynomial form.
From the analysis of this approximate form for S(q)-1 the
boundary between ferromagnetic and helical order is accurately
located. For R=l, the Lifshitz point occurs at SL=-0.271R ,
-0.263R, and -0.259R, respectively for n=l , 2, and 3. In
addition, near the Lifshitz point, the ordered phase wave
vector qo is found from the location of the minimum of

(j)- , and this gives qo%[S/R -(S/RL]~ 9 where Pq=½ -0.1. At
the Lifshitz the coefficient of q2 in (q)-1 vanishes and
2 (q)-1 a-c 4 .

In the helical phase, the dependence of 4 o on R,S, and
temperature is obtained by analyzing the full structure factor
series. From these series the phase diagram can be mapped
out. The structure factor exponent is estimated to be 1.35+
0.05 for n=l, while for n=2 or 3 the series are too short
to give accurate estimates.

The apparent dependence of this exponent on R and S is
studied by comparison with the spherical model (n=o). The
partition function is exactly calculated, and thereby very
lengthy series are generated. By analyzing these series,
it is found that the critical region shrinks drastically
near the Lifshitz point. Furthermore, from this simple fact
we can describe geometrically the full wave-vector and
temperature dependence of the structure factor.

Thesis Supervisor: H. Eugene Stanley, Professor of Physics
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I. BACKGROUND



1. INTRODUCTION

In this section, we present a simple introduction to

various properties of magnetic systems which possess an

ordered phase which is spatially non-uniform. This phase

may be described below the critical temperature, by a

magnetization which varies periodically in the material

with an associated wave vector qo. In certain systems

this wave vector is incommensurate with the lattice

structure, and furthermore, q is a continuous function of

relative spin interaction strengths; this form of order is

called helical order.

A feature that gives rise to helical order in certain

systems is the "competing" nature of the interaction between

spins. A typical example is ferromagnetic interactions

competing with antiferromagnetic interactions. Loosely

speaking, a spin doesn't know which way to point when such

competing interactions occur. Depending on the relative

strengths of the two types of interactions present, the

spin configuration that minimizes the free energy will be

one that compromises between ferromagnetic and anti-

ferromagnetic order. This compromise is the mechanism

that leads to helical order. In this work we shall study

the transition to helical order in a model system with

this type of interaction.



In order to understand how competing interactions can

give rise to helical order, we first study the order that

arises in a simple system, the spin 1/2 Ising model with

nearest-neighbor interactions. For simplicity we will

always consider models on a simple cubic lattice with unit

spacing between nearest-neighbor sites. Later we will

study a more general model in which further neighbor

competing interactions are also considered, and we will

show that this system can possess a helically ordered phase.

The spin 1/2 Ising model in zero field is defined by the

Hamiltonian,

AS ((1.1)

where each si = ± 1. The sum is over nearest-neighbor

pairs only. The ordered state at T=O 00 K is the one that

minimizes the energy. Because the Hamiltonian (1.1) is so

simple we find by inspection that the energy minimum occurs

if each product sis j+1 for J>O (ferromagnetic interaction).

This means that in the ordered phase, all the spins are

aligned as shown in figure 1.1.

Now consider the ordered phase for the case J<O,which

is the Ising antiferromagnet. For this system, the energy

is minimized by a spin configuration in which each pair

sis =-l. Consequently, in the ordered phase the spindirection reverses on alternate nearest-neighbor sites as

direction reverses on alternate nearest-neighbor sites as
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shown in figure 1.2.

For the ferromagnet the order parameter is the spin

expectation value , the magnetization per spin; in

dimensionless units wm' S/N where N is the number of

spins in the system. As the temperature is decreased,

starting from the critical temperature Tc , m grows rapidly

and approaches 1 as T-O (cf. fig. 1.3). On the other hand,

the staggered magnetization per spin is the order parameter

for the antiferromagnet, ma =~1(-Sst% , and this
staggered

quantity reflects the symmetry of the ordered phase. Below

T is plays the same role as the magnetization per spin of

the ferromagnet.

We can also think of this staggered magnetization as

the difference between the magnetization on a sublattice

made up of only A - sites, and the B-site sublattice

magnetization (cf fig. 1.2). This is one example of

commensurate ordering, in which the order parameter can be

expressed as a linear combination of a finite number of

sublattice magnetizations.

Commensurate ordering can equivalently be described by

a spin wave in which the magnitude of the associated wave

vector is determined by the lattice spacings. For the

antiferromagnet, spins on successive planes perpendicular to

any body diagonal (the 1,1,1) axis say), all point in the

same direction as shown in figure 1.2. This order can be
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characterized by a plane spin wave of wavelength X=2 //~ and

wavevector or~:'~d 1). With this method of describing the

order, it is simple to generalize to the case of a wave

vector which is incommensurate with the lattice. For this

case, a sublattice picture is not useful because an

infinite number of sublattices are required to describe the

order parameter.

Let us now generalize the interactions to allow for

dire ctional anisotropy. Consider the following Hamiltonian,

,J js (1.2a)

-3 (1.2b)

The sums are over nearest-neighbor pairs in the same

and adjacent x-y planes respectively. In what follows we

shall always consider the case J >0. The order that occurs
xy

below Tc depends now on the sign of R. For R positive the

energy will be minimized when each sis =+l. However, when

R is negative, the configuration in which sis =+l for

nearest-neighbor pairs in the same x-y plane and s s =- for

nearest-neighbor pairs in adjacent x-y planesminimizes the

energy. For R>0 we have spatially uniform order, the

ferromagnet, while for R<0 the ordered phase consists of
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alternating planes of aligned spins, the metamagnet. In

the latter case we can describe the ordered phase by a

plane spin wave of wavelength X=2 and wavevector

*-4
, CTI(o0o, i). In figure 1.4 we show the ordered phases

that occur for a system modeled by the Hamiltonian (1.2).

In the previous examples we considered systems which

exhibit commensurate order below T . By this, we mean that
c

the periodicity of the order is determined by the lattice

spacing. In these cases, minimizing the energy is quite

simple and often may be performed by inspection. When

further-neighbor interactions which can compete with the

nearest-neighbor interactions are also considered, we will

see that mere inspection no longer suffices to determine

the ordered phase. For example consider the following

Hamiltonian,

Z I T6 SSJj -2 $, S;. - S;Sj
i b'j (l.3a)

-S L Rs SS, StS )

(1.3b)

The third term represents an interaction between next-

nearest-neighbor spin pairs along the z-axis only. Figure

1.5 shows the interactions included in this Hamiltonian. We
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will see that the values of the parameters R and S determine

the ordered phases for this system. For this reason, we

call the model Hamiltonian (1.3) the R-S model. Our study

of helical order will be based on the study of this system.

To determine the ordered phase that occurs in the R-S

model as S varies, focus attention on three colinear spins

in the z-direction, and consider the case R>O (cf. fig. 1.6).

A positive S interaction only enhances the existing nearest-

neighbor interactions, and therefore the ordered phase

remains ferromagnetic. However suppose that S is negative,

and consider the case in which both spin 1 and 2 are pointing

up (cf. fig. 1.6). The R interactions tends to align

spin 3, but the S interaction has the opposite effect. For

a sufficiently negative S, the energy minimum occurs for

neither ferromagnetic nor antiferromagnetic order, and in

fact the order that does occur will represent some sort of

compromise. For such a phase the energy minimization pro-

cedure is quite difficult. Our expectation is that the

ordered phase will be helical, and in the next section we

will give evidence for this by treating the R-S model in a

mean-field approximation. Furthermore, from this treatment

we will be able to elucidate the important features of the

helically ordered phase.
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2. MEAN-FIELD THEORY

In order to easily understand the various physical

features of the R-S model, it is natural to apply the mean

field approximation. Calculations in this theory are quite

simple, and provide a reasonable qualitative description

of the physics. Only certain features of the model have

been previously treated in mean field theory, and therefore

we shall present a comprehensive study of the physical

properties of the R-S model. Two especially useful

references that are of some use are the books of Brout

(1965) and Smart (1966).

We are first interested in determining the ordered

phases that occur below T . This is accomplished

by minimizing the energy of the system. In order to proceed,

we are guided by the fact that the interactions R and S

are competing only along the z-axis, and therefore the

ordered phase wave vector q also points along the z-axis.

Thus, for the expectation value of a spin located at

r = (x,y,z) we write,

45; ) a (S.>) cas (,.r ) <(s.) cos v
(2.1)

where s is the spin at the origin. The energy of s can
O O



be written as (cf. fig. 2.1),

4 (0 8
E. -J3 (Z zs.s i RLs.sL + Sa sis)

i" L'S L'7

(2.2)

In the mean field approximation each s. is replaced by
1

its expectation value, and from (2.1) we obtain

E( -J 2 cz s • 2S cos 2s2o,)< s - YT() <s.)

(2.3)

where J(q) is the Fourier transform of the exchange inter-

actions. We find the energy minimum by differentiating

with respect to q

aEo/•9,- 2Rs In%- 4 S sin 2% r o

or

2R sln t 8 S s5sn cos . o

(2.4)

This equation has three solutions corresponding to three

types of possible order:
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C1) (-?c (2.1)

(3) (2) (A)

The third type of order occurs when E < E(2 E

and we find that this occurs when S<-IRI/4. This condition

marks the boundary between commensurate order, either ferro-

magnetic or antiferromagnetic, and non-commensurate order,

either helical or metahelical (cf. fig. 2.2). In the helical

phase q. is a continuous function of R and S and qo-+O at the

phase boundary. Figure 2.2 is a schematic phase diagram

showing the four ordered phases and the phase boundary, which

we will refer to as the Lifshitz boundary.

The critical temperature at any point in the R-S plane

is found by considering the mean field expression for <So>.

In a mean field approximation we have for spin ½,

r eA.t r'v4 A

(2.6)
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where He x t and Hm f are the external and mean-fields at the
o o

origin respectively. In the absence of the external field,

a non-zero <s > first occurs, as the temperature is
O

decreased, when the slope of tanh (BJ (q)<so>) is greater

than <so>. From this we find the critical temperature,

c J(q)=l (2.7)

This may be written as kT =J (4+21RI+ 2S) for commensurate
c xy

order, and kT =J (4+21RIcosq + 2S cos 2q) = J (4-R 2 /4 S-2S)
c xy xy

for incommensurate order. From these formulae the critical

surface can be described. For the commensurately ordered

phases, lines of constant Tc have slopes of 450 with

respect to the R or S axes, and these lines form part of

a diamond-shaped figure about the origin (cf. fig. 2.3a).

Therefore the critical surface consists of two planar

sections, each one inclined upward with respect to the R-S

-l
plane by an angle or tan- /. In the incommensurate phases,

T first decreases for fixed R and decreasing S beyond the
c

Lifshitz point. When S = -R/J-i, T is a minimum, and the

critical line for fixed R and varying S has a broad trough

about this point. (cf. fig. 2.3b) For still more negative

S, Tc rises again and as S+o the increase becomes linear

and the critical surface tends to a plane inclined upward
-i

the respect to the R-S plane by an angle of tan 12. All

these features are sketched in figure 2.3.
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Finally, we study the nature of the phase transition

as T+T . Below T , either the uniform, staggered, or
C c

helical magnetization becomes non-zeroand at Tc the

response of these magnetizations with respect to their

conjugate fields diverge. When a uniform magnetization

occursythe response function of interest is DM/3H, which

is just the direct susceptibility. We are interested in

the response of the helical magnetization M (of character-

istic wave vector qo) with respect to its conjugate field

H, and this response function is called the structure

factor Z(q ) . To derive an expression for this quantity,

consider first the helical magnetization below T .

Z ( '2,<S ) Cos %'&f)/N

S(2.8)

We rewrite this in the form

r r

(2.9)

and if H+r varies periodically in Z with wave vector qo'

then we have,
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(2.10)

and this proportionality constant is the structure factor.

= ( j< ( -T.-1

(2.11)

This first form is especially useful because it displays

the relative strengths of magnetization fluctuations of

different wave-lengths, and from this we can understand

the onset of helical order as follows. By approximating

Z(q) for small q we have,

mij- 9 + 214 5 +2\ti 1

2kT -4r t 1t s)ii - \RS 4 % + I 1 S .

Z\cr- k -iabxt 4 + W V2S

* T- Tr(*) t %- IRiA4 S
Tl.o') L kZ1R95iS S(2.12)

(2.12)



where T (0) is the critical temperature of the q=0
c

fluctuations. WhenS>-jRI/4 the coefficient of q2 in

(2.12) is positive, and a minimum of - (q) occurs at

q=0 (cf. Fig. 2.4). This corresponds to the fact that

at any T>T ,the largest fluctuations are for q=O, and

+
as T-+T these fluctuations diverge, while fluctuations

c

for q# 0 remain finite (cf. fig. 2.5).

However, when S<-IRI/4, the coefficient of q2 in

( 2.12) is now negative and a minimum of 1 fq) occurs

at non-zero q. An approximate expression for q2 may be
0

found by minimizing 2 (%) with respect to q, and this

gives,

2.

(2.13)

This expression agrees with q =Cos (-IRI/4S) to lowest

order in 1 + IRI/4S. As T-T C, S(qo ) diverges, and

fluctuations for all q#qo remain finite (cf. fig. 2.5).

The onset of helical order occurs when IRI+ 4S = 0,

and here the coefficient of q2 in (2.12) vanishes. This

condition marks the transition point between the dominance

of finite wavelength and zero wavelength fluctuations, and

therefore the transition can be regarded as an instability

in Fourier space. At this instability, fluctuations of

small non-zero wavevector are as important as zero wavelength
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fluctuations for T>T c, and the structure factor is no

longer Lorentzian (cf. fig. 2.6). Hence one might

expect that the critical behavior of a system at such an

instability is markedly different than the usual critical

behavior, and this is found to be the case (Hornreich et

al 1975).

Physically, the condition IRI+4S=0 marks the point

at which the competing influences of the R and S inter-

actions just balance. When this occurs, spin correlations

in the z-direction are drastically reduced (cf. fig. 2.7)

and consequently the nature of the phase transition changes.

Our mean field study has shown the importance of

understanding the q-dependence of the structure factor. In

later sections we will study the structure factor by

high-temperature series, and this will be the major focus

of our work.
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Figure Captions

Figure 2.1 The eight spins that interact with the spin

at the origin, So . These include six nearest

neighbors,5s-S , and two next-nearest

neighbors along the z-axis 51-5. .

Figure 2.2 The four ordered phases that occur in the

R-S model. The metahelical phase is obtained

from the helical phase by reversing the

direction of all the spins on alternate

planes.

Figure 2.3

(a)

(b)

Figure 2.4

Figure 2.5

A schematic map of the mean-field phase

diagram for the R-S model. Shown dotted

are contours of constant T
c

A typical critical line for fixed R = 1

and varying S. Shown is t=Tc(R=1,S)/T (R=1,S=O)

versus S. The arrows mark the Lifshitz point,

and the bottom of the "trough". Note the

exaggerated vertical scale.

The inverse structure factor B(q)-1 for

fixed T > T . The minimum of j(q)-1 deter-
c

mines the ordered phase wave vector qgo

This may be found by minimizing the approximate

expression for S(q)-1 shown in the figure.

As T -*T +, the inverse structure factor
c

minimum touches the q-axis, and this corres-



Figure 2.6

Figure 2.7
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ponds to a divergence of the structure factor.

The q dependence of the structure factor for

T >T . At the Lifshitz point, the coeffi-c

cient of q in (2.12) vanishes and the peak

is no longer Lorentzian. Note that even in

the helical phase the peak is a Lorentzian

centered about qgo

The size of a "correlated region" of spins.

When S=O, the interactions are isotropic,

and the "correlated region" is a sphere of

radius g , the correlation range. When

S = -)RI/4, the correlation range in the

z-direction varies as the square root of

the correlation range in the x-y plane.

Consequently, the shape of the "correlated

region" is quantitatively different than in

the case of isotropic interactions.
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3. PAST AND PRESENT WORK

A. PAST WORK

The existence of helical order was first proposed by Kaplan(1959),

Villain (1959) and Yoshimori (1959) (cf fig. 3.1). By using mean field

theory, it was shown that a helically-ordered phase is energetically

favored over a ferromagnetic phase in model systems which include

further neighbor competing interactions. This type of interaction has

as its phenomenological basis the RKKY interaction (Kittel and Ruderman

1954, Kasuya 1957, Yosida 1957) in which a coupling between 4f valence

electrons and conduction electrons gives rise to an effective exchange

between ionic spins at sites i and j proportional to (xcosx-sinx)/X.*

where x= . - r .

The pioneering work of 1959 gave impetus to a large number of theoreti-

cal studies using mean field theory. The primary focus of attention was

the classification of the various types of helical order. Some of the

major contributions were the works of Herpin et al (1960), Kaplan (1961),

Kaplan et al (1961), Miwa and Yosida (1961), Enz (1961), Nagamiya (1962),

Yosida and Watabe (1962). Elliott (1961) originally introduced the

R-S model in order to explain certain features experimental measurements

on the helical phase for erbium.

The first experimental observation of helical order occurred sometime

prior to 1959. However, in the absence of a theoretical understanding, the

early experiments were not properly interpreted. Helical order appears to

have been discovered first by Erikson (1952), in neutron diffraction

measurements of MnO2 . His interpretation of the data suggested an
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ordered phase consisting of two uncorrelated, intercalating antiferro-

magnets, and it was Yoshimori (1959) who first interpreted the data

correctly and proposed a screw-type structure for the ordered phase. In

hindsight, both the experiments of Behrendt et al (1954), and Herpin (1956)

were clues indicating that helical order was occurring in the materials

studied, but both these clues were ignored.

After the theoretical breakthroughs of the early 60's, considerable

interest arose in studying the magnetic structures of the rare earths,

which possess an unfilled 4f shell. Within several years, a wealth of

helical spin structures was discovered. Examples include erbium

(Cable et al 1965), thulium (Koehler et al 1965, Brun and Lander 1969),

neodymium (Moon et al 1964, Lebech and Rainford 1971), praseodymium

(Cable et al 1964), dysprosium (Wilkinson et al 1961), europium (Nereson

et al 1964), holmium (Koehler et al 1966, 1967), and terbium (Koehler et

al 1963, Dietreich and Als-Nielsen 1967, Brun and Lander 1971). Much

of the relevant experimental data from this time is summarized in the

reviews of Koehler (1965) and Cox (1972).

After 1965 approximately, research in the field diminished as a

fairly exhaustive theoretical and experimental survey of magnetic struc-

tures was complete. Recently, it was pointed out by Hornreich et al

(1975 a,b), that new interesting critical behavior can occur at the

transition between ferromagnetic and helical order. Physically, this

feature arises from a q=space instability in the spectrum of the struc-

ture factor (see also section 2). By using the renormalization group,

it was shown that at this transition point, termed the Lifshitz point, the

exponents belong to a different universality class than the exponents
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which characterize the ferromagnetic or helical phases. This situation

is analagous to tricritical behavior in metamagnets (Harbus and Stanley

1973), in which a first order and second order line meet at a tricritical

point (cf fig. 3.2). The theory of the Lifshitz point was extended by

Nicoll et al (1976a,b,1977), in which exponents were calculated at more

general classes of Lifshitz points.

The theoretical studies indicate that it will be very interesting

to experimentally study materials in which a Lifshitz point occurs.

Such a material UAs1-x Sx , has been found by Lander et al (1972). Here

x appears to play the role of a competing interaction in the R-S

model. As x varies the system can change from antiferromagnetic to

helical and then to ferromagnetic order, and the phase diagram is

qualitatively similar to that of the R-S model (cf fig. 3.3). However,

there was no existing theoretical work to guide the experiment, and

consequently the interesting features near the Lifshitz point were not

studied.

In the past year, a more promising avenue of study has opened up

in liquid crystals. Theoretical work by Chen and Lubensky (1976), Chu

and Macmillan (1977) and Michelson et al (1977) indicates that Lifshitz

points can be attained in liquid crystals (cf fig 3.4), while the

recent experiments of Johnson et al (1977) appear to confirm this idea.

The liquid crystal work is quite sparse, and much work remains to be done.

These recent developments have spurred renewed theoretical interest in

model systems in which a Lifshitz point and a helical phase can occur.

The R-S model is a straight-forward and concrete example of such a

system, and consequently it has been the focus on some recent work.

The exponents of the helical phase have been calculated by Droz and



Coutinho-Filho (1975), Garel (1976 , and Garel and Pfeuty (1976) in an

E-expansion. It is found that if the exponents in the ferromagnetic

phase are those of n-component spins, then the exponents in the helical

phase are those of 2n-component spins. Physically, this originates from

the fact that in the helical phase, fluctuation of both + q diverge-- qOdieg

at the critical point, and if q is incommensurate, than +q and

-J)

-q cannot be connected by reciprocal lattice vectors. That is, each spin

component effectively has two independent critically fluctuating parts,

resulting in 2n-vector exponents. In addition, the details of the phase

diagram have been studied in the nwoolimit of the R-S model by Hornreich

et al (1977).

These studies are limited in scope however, because certain important

features such as the properties of the ordered phase wave vector q o

and the location of the Lifshitz point are either assumed to be mean-field

like for finite n, or are actually mean-field for n='o. This motivates

our series calculations, in which a comprehensive numerical study of the

R-S model can be made.
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B. PRESENT WORK

This thesis is organized as follows: In section 4

we begin with an introduction to the series analysis

techniques used in our work. We pay particular attention

to understanding the influences which affect the order-

by-order trends in series extrapolations. This understanding

proves to be crucial when analyzing R-S model series. In

section 5 we illustrate and test our analysis methods on

the anisotropic three-dimensional Ising model. This system

crosses over from two to three dimensional ordering as T

decreases and approaches Tc, and this crossover can be

made evident in the order-by-order trends in series

extrapolations only by applying the methods outlined in

section 4. We present our central results in the next

three sections. In section 6, the details of the series

generation procedure, some new rigorous results which

verify certain of the series coefficients, and the analysis

of the susceptibility series in the ferromagnetic phase

are discussed. Then in section 7 and 8, we study the

properties of the R-S model near the Lifshitz point, and

in the helical phase. We map out the phase diagram,

accurately locate the Lifshitz point, study the dependence

of qo on R,S,and Tand estimate the exponents. in the helical

phase. These exponents appear to vary continuously with
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R and S, and this variation is most pronounced near the

Lifshitz point. This apparent violation of universality

is a problem which is addressed in section 9, where we

argue that the critical region shrinks drastically near

the Lifshitz point. As a test, in section 10, we

compute the partition function for the n== R-S model for

arbitrary dimensionality. From this, we can show that

asymptotic series behavior near the Lifshitz point does

not become evident until an exceedingly large number of

series coefficients are calculated. Finally, we

summarize our major results in section 11, and conclude

with some suggestions for future work.
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Figure Captions

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4
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Summary of past and present work on helical order.

Comparison of the phase diagram for a tricritical

system, and a system exhibiting a Lifshitz point.

The exponents at the tricritical point or at the

Lifshitz point are different than the exponents along

the second order lines. At this point three phases

become identical.

Comparison of the phase diagrams for the R-S

model, and for the material UAs•i- S , which was

studies experimentally by Lander et al (1972). The

notation meta' refers to a phase in which successive

x-y planes are ordered as ++--++--. For the R-S

model, we show a slice of R-S-T space in which S

is fixed at some negative value.

The liquid crystal phase diagram proposed by Chen

and Lubensky (1976), and Chu and MacMillan(1977).

The Lifshitz point occurs at the confluence of the

nematic, smectic-A, and smectic-C phases.
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II. METHODS
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4. SERIES ANALYSIS

In this section we consider some of the techniques used

to extract information about the critical behavior of a

system from the knowledge of a finite number of terms in a

high-temperature series expansion of various thermodynamic

functions.

A high-temperature series is a power series of the

form,

N L

=o I (4.1)

and it is often more useful to view the series as an expansion

for small S. Where no confusion can arise, we shall refer

to 5 as a "temperature". Here A(8) is the notation we shall

use for the series representation of a generic thermodynamic

function A(B). The first L terms in the series representation

A, accurately represents A for the temperature range

0<P<PC-SL, where 6L depends on L (cf. fig. 4.1). As more

terms for A are calculated, the temperature range of accuracy

for the series increases and therefore SL decreases.

However, at the critical point, the truncated series remains

finite while a typical thermodynamic function exhibits a

singularity of the form.



5- 4

+ ýess S*%A\ctv 4 tevCvvs a~s B

(4.2)

where a(B) is an analytic function at 5c. Here, the less

singular parts may be confluent with the singularity at SB

The critical region may be defined as the temperature region

in which the contribution of the less singular terms in A(B)

become negligible, and in this region A(B) varies simply as

(4.3)

Our goal is to understand the singularity A( c) from

its finite series representation. Since it is often the case

that the series coefficients in A grow in a regular pattern

k increases, it is tempting to guess the remaining

infinite number of terms in A based on this pattern, so that

we may extrapolate the series to the critical temperature.

Once we have guessed these remaining terms, then the critical

temperature 5B and exponent X may be found by a variety of

methods. Series analysis embodies this guessing procedure,

and the subsequent techniques for finding 5c and ý (for

reviews see Gaunt and Guttmann 1974, Hunter and Baker 1973,

Baker and Hunter 1973).



While there are few rigorous results concerning the

usage of series analysis, these techniques have gained wide

acceptance. This is due, in part, to the excellent agree-

ment of the results of series analysis with the results

found from systems for which an exact solution exists (see

for example Domb and Sykes 1957, Milogevic and Stanley 1971).

Furthermore, in studying model systems for which no exact

solution exists, analysis of series consisting of L terms

yields estiamtes for the critical point and exponent which

appear to converge rapidly to a limit as L increases (e.g.

Rushbrooke and Wood 1958, Sykes and Essam 1964, and Betts

et al 1970). Because of these reasons series analysis is

now accepted as an accurate tool in studying critical behavior.

Series analysis is often applied to systems in which

there is only a single critical point of a simple type

in which an ordered and disordered phase become identical.

In this case, the less singular terms in A(s) are small,

and the amplitude function is singularity free for a large

range of ý; hence the asymptotic form for A(s) is dominated

by A singular (ý). Analysis of series for these systems

is straightforward, and quite accurate results may be

obtained. However we will study systems in which there

exist competing interactions, so that different types of

ordered phases may exist as the relative strengths of the
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interactions are varied. We will see that this may lead

to a crossover between different types of critical behavior

as the temperature varies and approaches B (Harbus and

Stanley 1973). This crossover should be manifest in series

analysis as follows. Because progressively lengthier series

probe progressively closer to c, analysis of relatively

short series should yield one set of estimates for the

critical point and exponent, while analysis of more lengthy

series should yield a different set of estimates. That is,

one type of critical behavior is evident from analyzing

low order series, while a trend to the true asymptotic

behavior does not appear until very high order as shown

in figure 4.2. It is the study of these trends that we

are concerned with in this work.

When crossover occurs, corrections to A singular (B)

may be substantial even quite close to c . These corrections,

may appear in the series representation as apparent

singularities at temperatures not equal to ýc. In the

presence of such corrections, the true asymptotic behavior

of a system may be hidden. That is, the apparent singularities

have a substantial influence on the order-by-order trends

in series estimates. Therefore, in order to study the

order-by-order trends associated with the physical singularity

only, it is first necessary to minimize the effect of
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these "non-physical" singularities on the analysis of A(3)

(Baker 1965, Guttman 1964). This can be accomplished by the

complementary use of the ratio and Pade methods as indi-

cated in figure 4.3. We now turn to a study of these methods.

(a) PADE METHOD

The [N,D) Pade approximant (Pade 1892) is defined as

the polynomial in /3,

This function is used to model the series representation for

A(p) as follows. If L terms for A(/3) are known, then for

each [N,D) pair such that N+D I L,we require that the series

representation for PIN,D3 (P) and A(P) are identical up to

order L. In practice one is interested only in the roots

and residues of the Pade approximant for each tN,D) pair.

This information is usually displayed in a triangular array,

called a Pad• table. Each array entry corresponds to one

[N,D) pair.

If A(3) extrapolates to a singularity of the form (1-1/V)

then one might expect that some of this singularity informa-

tion will appear in the Pade table (1970). It is a mystery

why Pade approximants work so sell, and rigorous results about

convergence of the approximants as[NDj,-o exist only for

certain restricted forms of A(P). However, Pade analysis has

proven to be an extremely useful tool for giving accurate

information about critical points (Baker 1961, 1965, 1970).

This is the basis for its use and acceptance.



In what follows, we assume that the less singular parts

of A(P) may be neglected, and that A singular (B) is of

the form.

L

T (1i 
(4.5)

where b(Q) is analytic for all3 , and the subscript 1 will

refer to the physical singularity in what follows. Pade

approximants are not usually applied to A(~) directly for

the following reason. If the A . are non-integral (branch-

point singularities), as is usually the case, then only an

infinite series representation can accurately describe such

a singularity. Hbwever for integral 2i (poles), a finite

order denominator in a Pade approximant can exactly describe

such a pole. Thus it isuseful to transform A ( ) so that

the presupposed branch points are converted into simple

poles. One such method is the following transformation on

(4.5)

(4.6)

The function A(A) has been converted into a product of

simple poles, and the Pade approximants to B(P) can now

accurately pick out each singularity and its residue,

independent of its location. This technique is usually the

first method applied to a series in order to obtain a rough



5()
map of the singularity structure evident in a series. When

such a map is obtained, one can then proceed with further

analysis appropriate to the singularity structure at hand.

A more accurate estimate of Pc may be obtained by a

Pade analysis of the following function (Baker 1961,

Gaunt and Guttman 1974),

CII R(pY~R'

(4.7)

where 1 is either known exactly, or there exists an accurate

estimate for 1. The singularity structure of C(P) is

of the form,

n\ i/A I i LZ eMsj

.( .(4.8)

This transformation picks out the physical singularity,

and poor convergence of Pade approximants to the other

singularities occurs. In practice various approximants to

C(A) give strikingly consistent results for the physical
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singularity, and PI may be determined quite accurately.

Furthermore, a reasonable estimate for /31 may be obtained

by examining Pade tables for [A(P)]J for a range of 1

values. The 21 value for which the Pade table is most

consistent can then be interpreted as the exponent of the

physical singularity.

For our purposes, Pade approximants are useful in mapping

out the singularity structure evident in a series. With

this map one can then devise transformations which isolate

the physical singularity. When this is accomplished, the

series coefficients are found to behave quite regularly and

are now amenable to analysis by the ratio method.

b) RATIO METHOD

As stated earlier, in problems involving crossover one

type of critical behavior is evident at high temperatures,

but as the temperature is reduced to near the critical tem-

perature, a "crossover" to another type of critical behavior

occurs. Progressively higher order series prove progressive-

ly closer to /c and therefore the order-by order trends in

the series coefficients will reflect this "crossover (cf. fig.

4.2). Ratio methods perform an order-by-order extrapolation

of series coefficients, and are therefore ideally suited to

study such "crossover" effects.

The ratio method in its simplest form is used to analyze

functions whose asymptotic behavior is of the form (1-P/ý ) c
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(Domb and Sykes 1957 , 1961). The t coefficient at in

the series representation for (l-I3i/) is XMit ... i-•/•

and the th successive ratio pP•ra/,/ I . 1-.-i)/i -(1i

A plot of At versus 1i/ is a sequence of points which lie on

-i1
a straight line of slope (J-1)/Pc and intercept pc1. Thus

the geometric features of the ratio plot locates the critical

point and exponent (cf. fig. 4.4).

We wish to analyze thermodynamic functions which near

the critical point behave as

&Lo *(4.9)

where a(j3) and b(ý) are analytic functions within the disc

•I t •• in the complex /-plane, but may be singular outside

this disc. The ratio method picks out and analyzes only

the singularity nearest the origin in the complex P- plane,

which in this case is the singularity at pc. As the critical

temperature is approached, the influence of a(p) and b (3)

on series extrapolation decreases. This fact is quantified

by the results of the Darboux theorem which states that

the difference between the aj and c. is of order 1/1

(Darboux 1878). Thus a plot of the ratios c) /ct_1 versus

1/t yields a sequence of points which lie on a curve that

tends to a straight line as a-4w (C L4.1) t). This "straightening"

of the ratio plot is a necessary but not sufficient condition



that the asymptotic behavior of a series as P-P is (1-P/ ) .

At each order , we can form the sequence of estimates

for ,) f- (&i ,, which is the intercept of the line

drawn through ,o andp.ý. when plotted againstl/L. Furthermore,

the slope of this line at each order is given by the sequence

(a-il)/£ which defines the sequence of exponent estimates

I i-I- I - Pt ) (cf. fig. 4.5).

We wish to understand the influence of singularities

at PL/3c in determing the trends in the sequences Aj or Pg

as a function of I/k . From this we can get a feeling for

the rate at which asymptotic behavior is approached. This

rate may be reduced considerably when a(S) or b(p) is

singular outside the disc 3I1I f, as is often the case. When

this occurs the order 1/1 corrections of the Darboux theorem

may have a large amplitude, and a plot of the sequences ALor

A• will exhibit a large curvature, which may be opposite

to the curvature found when plotting the Ajandptfor the case

when a(3) and b(P) are singularity free. We shall see that

this effect can hide the true crossover behavior of a system

with competing interactions. To understand the size of

this effect, we study by the ratio method two model func-

tions whose singularity structure is identical to the

singularity structure found in many thermodynamic functions.

We will see that the correct trends in the sequences Aor A

are evident only when transformations which isolate
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the physical singularity are performed.

i) ANTIFERROMAGNETIC SINGULARITY

Consider first the following function and its series

representation

(it. 10)

We consider this form because it models the typical singularity

structure found in thermodynamic functions on a loose packed

lattice. The singularities at Pcand -PAF represent the

ferromagnetic and so-called antiferromagnetic (Domb and

Sykes 1957, Sykes and Fisher 1962) singularities respectively.

The singularity at - , which is usually much weaker than

the ferromagnetic singularity, has the following effect on

ratio extrapolations.

For 1< ,,the ferromagnetic singularity is nearest the

origin, and plots of the successive ratios a/~~a/ versus jt/ show

oscillations which damp out as i increases (cf. fig. 4.6a). On

the other hand when PA< . the ratio method eventually analyzes

the singularity at -~F, and this means that the successive

ratios all become negative at some order. From the figure

we see that the oscillations in the ratio plot grow initially,

and the envelope curve defined by the oscillations appears

to diverge. Note that the average of the ratios at low

order gives a reasonable estimate for N, while the trend to

AFdoes not occur until higher order. In this case the



influence of the more distant, stronger singularity at Ac'

on extrapolations for the singularity at - PAF is quite large,

and persists to high order.

In real systems, both the cases Pc PAF and PAFAfc occur.

To extrapolate series with such a singularity structure, it

is tempting to "average" the oscillations in the ratio plots.

However, this can give quite misleading results (cf. fig. 4.6b).

For this reason, an alternative method of smoothing the ratios

is called for, and in the following section we deal with

this problem.

ii) BILINEAR TRANSFORMATION

As we have discussed, the "antiferromagnetic" oscilla-

tions in the successive ratios can be a major hinderance in

inferring the co rect trends in the PX. The following trans-

formation on the series representation

(4.11)

smooths the ratios, because the antiferromagnetic

singularity is actually removed (cf. fig. 4.7). If a series

originally shows singularities (by a Pade analysis) at Pi

and -P2' then after the transformation -92 is transformed

to -ao while ~1 is transformed to ./(i JA ) . A new

spurious singularity is introduced at sP + 2>P1 which is

related to the singularity at +00 in the original series,

and in the next section we will study the influence of this



new singularity on ratio extrapolations.

Often we have only a reasonable estimate for P2. In

this case the original singularity at - 2 transformed to a

finite, but more distant location from the origin. Due to

the weakness of the antiferromagnetic singularity in most

systems we find that ratios are smoothed when bilinearly

transforming a series for a large range of P2 values about

the correct value (cf. fig. 4.8). Thus after the bilinear

transformation the ratios are smoothed, and trends can now

be seen easily. This is shown in figure 4.8 where we show

ratio plots of the series resulting from a bilinear trans-

formation of the series (4.10). However, we now expect,

based on the Darboux theorem, that the influence of the

spurious singularity on ratio trends is quite large. This

problem is treated in the following section.

iii) SPURIOUS SINGULARITY

The second model series we study is of the following

form,

(4.12)

where 1C B2. This series has the singularity structure that

is typically found after bilinearly transforming a series

containing both the physical and antiferromagnetic singulari-

ties. We will see that the order 1/i corrections in the ratio
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plots due to the influence of the singularity at/3 2 can

give rise to trends opposite to the trends found when analyz-

ing the series without the spurious singularity present.

To see this effect, we compare the successive ratio

estimates for the exponent found by analyzing series for

the functions f(J) = and f(() = _/3)-5

(cf. fig. 4.9). Here f(3) represents a thermodynamic func-

tion possessing both a physical singularity at P= 1, and a

spurious singularity at 2, while ftrue presents the

same function without the spurious singularity. From analyz-

ing ftrue( ), we find that each Atrue= 1.25, while from f(P),

the It form an increasing sequence of numbers that smoothly

extrapolates to 1.25. Evidently, the influence of the

additional spurious singularity is not major for the model

thermodynamic function f tr((). However, now consider a

more realistic form for ftrue. Suppose f true() is of the

form a(p)x(l-) - 5 / 4 where a(3) may be singular for / 1.

This form provides a more realistic test of the influence

of the spurious singularity. Thus, we analyze the

functions f'( 3) =( -5/4 a(f) and f',true( ) = a(<)(I_6)-5/4

As a typical example we first choose a(p) = (1-P/4)-.

Analysis of f'(/) and ftrue(3 ) now yields two sequences Xt

true
and rue which show opposite trends, but both sequences

extrapolate to 1.25 at high order (cf. fig. 4.10). The

discrepancy between the two sequences decreases with increasing

order, and one might



therefore conclude on the basis of the simple model functions

studied, that the spurious singularity is relatively inimport-

ant. However, in the next chapter we shall analyze series

for a real system which exhbits crossover, and we shall see

that the discrepancy between Axand A true can actually grow

as l increases and it is quite easy to infer incorrect

exponents (Oitmaa and Enting 1971, 1972, Paul and Stanley 1971,

1972, Rapaport 1971). From this we conclude that a correction

for the spurious singularity is necessary. In practice

this singularity is "removed" by multiplying the series by

(l-P/P2) . If the spurious singularity arises from a

bilinear transformation, thenP 2 is just the parameter in (4.11),

and hence is known exactly. The exponentV is in principle

the same as the exponentA , and usually the sequence Aj can

provide a reasonable estimate for . Therefore after multi-

-v1
plying the series by (1- Ppsp ) the singularity at P2 is

removed completely, or is made extremely weak compared to the

physical singularity.

In either case, the trends that occur now should more

closely reflect the features of the physical singularity only.

This will be verified in the next section where we study the

anisotropic three-dimensional Ising model.
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Figure Captions
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Figure 4.1) Comparison of a typical thermodynamic function

A(P), and the series representation A(P) based

on a finite number of terms. The trancation

is not accurate near the critical point.

Figure 4.2a) Idealized illustration of crossover. For a

range of A, A(P) varies as (1l-P/Pc

However at the crossover temperature Px,A(P)
departs from (1-B/3c)-" 2 and only very close

to Pc is the asymptotic behavior of (1-/Pc) AL

evident.

b) Exponent estimates will give the value A2 if

only a few terms for A(P) are analyzed. However

if enough terms (>Ix) are generated, so that

the series probes into the crossover region

(P >), a trend to /i will become evident.

Figure 4.3a)

Figure 4.4)

A flow chart illustrating the use of the ratio

and Pade methods. The initial Pade analysis

may reveal further non-physical singularities,

indicated by the asterisk. Analysis of such

series becomes more complicated (see also

section 10).

The ratios of successive terms , in the series



Figure 4.5)

Figure 4.6

70
expansion for (1-p) - 5/4 (dots), and (1-P) - 5 / 4

+ (1-P/1.5)-1 (open circles). For the former

case, the llie on a straight line, and the

intercept gives the critical point, while the

slope gives the exponent. From the result of

the theorem of Darboux (1878), the difference

between the p, for the two functions is of order

1/0 and hence this difference vanishes as ~ .

Schematic illustration of the ratio method. At

each order i the line joining p and pI.

determines the IJ estimates for the critical

point and exponent. If the singularity that

determines the radius of convergence is on the

positive real axis, and isolated from all other

singularities, then these estimates appear to

converge to a limiting value as increases.

a) The ratios of successive terms in the series

-5/4 1/10expansion for (1-P) 5/4(1+ 3 /PAF/ . When

/AF>1 the oscillations in the gradually damp

out, but when BAF<l these oscillations grow

and eventually the ratios will converge to - AF*

b) If we choose - AF=0.6 and Pc=1.0, then the

asymptotic behavior of the series is not evident

until more than twenty terms are generated.



Figure 4.7)

Figure 4.8)

71.
Note that upon averaging the first few , a

reasonable estimate for the location of the more

distant singularity at pc may be obtained. This

shows that the influence of a relatively strong

but more distant singularity on series extrapola-

tions can be overwhelming at low order.

The effect of bilinear transformation on

singularity structure. If a Pade analysis of

the original series shows singularities at

c and - AF' then after the bilinear transforma-

tion (/(I+PI/AF), the singularity at - AF

is transformed to -oo, while pc is transformed

to1c/(l+Pc/PAF). A new spurious singularity is

introduced Psp=+AF and this singularity

originates from the singularity at +foin the

original series. If we use an incorrect choice

for ,,in thebilinear transformation, the anti-

ferromagnetic singularity is moved away from

the origin by a finite amount.

The effect of the bilinear transformation on

ratios. The transformation - 1P/(.~+/AF) is

applied to the series for (1-P) - 5 / 4 (1+P/0.6)1/10

The "correct" choice for ýAF if 0.6, but note

that the choices AF=0. 4 or PAF0.8 also reduce

the oscillations in the ratios.



Figure 4.9) The effect of the spurious singularity on

successive ratio exponent extimates. The

function -( models a thermodynamic

function with a spurious singularity at while

(1-P) - 5 / 4 models the "true" thermodynamic function.

Fiugre 4.10) A better test of the influence of the spurious

singularity is to compare exponent estimates for

(l-)-5/4 a(P) and a( ) .a These

functions model more realistically the "true"

thermodynamic function and a thermodynamic

function with a spurious singularity respectively.

Both sequences of exponent estimates converge

to 1.25, but from different directions.
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5 APPLICATION OF SERIES ANALYSIS TO THE 3-D ISING MODEL

In this section we apply some of the methods of series

analysis to a study of the susceptibility series for the

three-dimensional Ising model with lattice anisotropy. This

system is found to exhibit crossover (Abe 1970, Suzuki 1971)

as the anisotropy strength varies, and an application of

series analysis methods as outlined in the previous chapter

can successfully describe this crossover. This serves as

a check on the validity of our analysis methods, and this

will prove to be very important in later applications.

We study the model Hamiltonian

(5.1)

where the sums are over nearest-neighbor spin pairs in

the same and adjacent x-y planes respectively. Several

authors have studied this system by using series expansions

(Oitmaa and Enting 1971, 1972, Rapaport 1971, Paul and

Stanley 1971, 1972), and here we shall present only the

results we need to illustrate our method of analysis.
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For R=O the system is a stack of decoupled two-

dimensional lcyers, and the susceptibility series for

the system will be that of the two-dimensional Ising model.

This susceptibility diverges at a critical temperature of

k T/Jxy =[tanh-(V_-1)] 1= 2.27, with an exponent y of 1.75.
B xy

On the other hand when R=l the system is three-dimensional.

The critical temperature is k T/Jxy 4.51 and the

susceptibility exponent is 1.25. Consider now the situation

for some O<R<<1. At high temperatures the system is

disordered. As the temperature is gradually decreased,

correlations between spins in different x-y planes remain

negligible, but correlations between spins in the same x-y

plane grow at a rate that would indicate a susceptibility

divergence at the critical temperature for a two-dimensional

system with an exponent of 1.75. This will be valid as

long as the ordering effects of the interplane interactions

are weaker than the disordering effects of thermal agitation.

Decreasing the temperature further gradually increases the

tendency for spins in different planes to align, and a

crossover from two-dimensional to three-dimensional ordering

begins. Just above the three-dimensional critical temperature

the correlations are three-dimensional implying that the

susceptibility exponent is 1.25 for all R, as predicted by

universality (cf. fig. 5.1).



This crossover behavior should be evident in the high-

temperature susceptibility series for small positive R

in the following way. The first few terms of the series

probe only the high temperature region, where spin

correlations are two-dimensional and therefore extrapolating

series consisting of only these first few terms should indicate

two-dimensional behavior, that is, a susceptibility exponent

of 1.75. Generating more terms in the series effectively

probes to lower temperatures and eventually the three-

dimensional exponent value of 1.25 must be evident. For

smaller R values, the crossover region shrinks (cf. fig. 5.2)

and hence correspondingly more series coefficients are

required in order to observe crossover. This simple

intuitive picture willemerge in our study of the series.

We first analyze the raw susceptibility series for a

range of R values. Figure 5.3 shows the successive ratio

exponent estimates y, plotted against 1/k. Due to the

presence of the antiferromagnetic singularity, there exist

oscillations in these plots which hide the order-by-order

trends in the y . We therefore bilinearly transform the

series, using for BAF in eq. (4.11), an estimate based on a

Pade analysis of the logarithmic derivative of the original

series. Plots of the resultant y versus 1/£ are shown in

figure 5.4. The oscillations have now been removed, but

understanding the trends that occur now is difficult.
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It appears that y does depend on R in contradiction to

universality. However a Pad" analysis of the transformed

series reveals the spurious singularity (cf. fig. 5.4).

Based on our experience from section 4, we expect that the

effect of this singularity will be substantial and therefore

we correct for this by multiplying the series by (1-B/B ) .
sp

For Ur we use both 1.25, and also the value of the susceptibi-

lity exponent based on a Pade analysis of the original

series (see also section +). Both choices fori should give

consistent results, and we find this to be the case. The

physical singularity is now well isolated, and the expected

crossover behavior is evident (cf. fig. 5.5). For small R,

an extrapolation of the first few Yk show sharp downward

trend. This downturn occurs at higher order for smaller

R, thereby indicating that the crossover region shrinks as

R decreases (cf. fig. 5.2). The trends in the y are

quite striking and strongly suggest that y=1. 2 5 for all

O<R<l. Because the spurious singularity correction appears

to be an essential complement to the bilinear transformation,

we shall define, for applications in the following sections,

the bilinear transformation to mean both the bilinear trans-

formation and the spurious singularity correction.

In order to be certain that the analysis trends are

physical and not the result of the transformations we perform

the following check. The analysis procedure we employ

involves the two parameters BAF and V, and if we are justified
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in trusting our methods, the results we obtain should be

insensitive to the choices of 3AF and r. To test this, we

first bilinearly transform a typical raw susceptibility series,

using for AF a range of values aroung the optimum value. Each

resultant series shows a spurious singularity, and we correct

for these by multiplying each series by (1-#/is p ) , where

forv wealso use a range of values around the optimum. The

resulting sequences we obtain are only weakly dependent

on the choice of (AF and v (cf. fig. 5.6), and moreover the

trends in each sequence are the same. This further confirms

our result that the trends found from analyzing the trans-

formed series are physical, and do not originate from the

transformations themselves.

We have treated the anisotropic Ising model in detail

in order to develop an analysis procedure that is appropriate

for detecting crossover phenomena. Specifically, we wish

to observe trends in series extrapolations due to crossover

only, and this seems to o cur when we have sufficiently

isolated the physical singularity in the complex -plane.

When we have accomplished this, the trends we find agree with

our intuition, and therefore strongly support the validity of

our analysis methods. This confirmation is important, because

in later applications to the R-S model our analysis results

are not so easily interpreted. For this reason it is important

that we have strong evidence that our analysis methods are

to be trusted.
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Figure Captions 9)

Figure 5.1 An ;eo\ited illustration of crrosover for the

anisotropic Ising model. For some temperature

range above Tc, the susceptibility appears to

vary as (T - T ) . At lower temperatures,
c

a crossover to the asymptotic behavior of

(T - T ) occurs.
c

Figure 5.2 A projection of the phase diagram onto the T-R

plane. The dotted arrow schematically illus-

trates that progressively longer series

probe progressively closer to T . For smaller

R values, ordering in the z-direction beg;ns

progressively closer to Tc, and the crossover

region shrinks.

Figure 5.3

(a) Successive ratio exponent estimates for R = 1.0

(dots), and R = 0.01 (squares). For R = 1.0,

a naive averaging of the ratios produces a

smooth curve that quickly converges to 1.25

(open circles). However, when R = 0.01,

the result of the averaging procedure still

shows oscillations, and no definite trend

to 1.25 is evident (open squares).

(b), (c) The singularity structure of the logarithmic

derivative of the raw series for R = 1.0 and

R = 0.01, showing both the physical (denoted by

an f), and antiferromagnetic singularity (denoted



by af). Other s ngularities which appear

consistently in the Pade table are marked

by an x.

Figure 5.4

(a) The successive ratio estimates which occur

after the bilinear transformation 34/(i*3IA)"

From the Pade tables of the "raw" series,

the choices PAV = 0.245, 0.446, 0.465, and

0.463 are used for R = 1.0, 0.1, 0.05, and

0.01 respectively. The estimates for R =

0.1 and 1.0 appear to converge to 1.25 from

above and below respectively, while estimates

for the case R = 0.01 only increase. No

definite trend in the exponent estimates

as a function of R is evident.

(b),(c) The singularity structure of the bilinearly

transformed series showing the physical

singularity and the spurious singularity

(denoted by sp). Note also the presence of

the additional singularities in the first

and fourth quadrants.

Figure 5.5

(a) The successive ratio estimates after a spurious

singularity correction of multiplying the

series by (1-P/3/sp) is made. From the Pade

tables of the bilinearly transformed series,

the choices = 1.24, 1.26, 1.38, 1.46 are used



for R = 1.0, 0. P, 0.05, and 0.01 respective-

ly (cf. fig 5.4 (b), (c) ). The estimates

shown indicate the crossover behavior that

is explained in the text. Note especially

that for R = 0.01, the first few \Y appear

to extrapolate to the two-dimensional exponent

of 1.75, and then there is a sharp downward

trend indicating that the W) will converge

to 1.25.

(b), (c) The singularity structure of the series after

the bilinear transformation, and a spurious

singularity correction. The additional

singularities which remain in the complex

P - plane are much weaker than the physical

singularity.

Figure 5.6 The sensitivity of the exponent estimates

on the choices of 3 AF and V is shown for

the typical case R = 0.01. In both (a) and

(b) a wide range of choices for /3 Av in the

bilinear transform, and V1 in the spurious

singularity correction lead to small changes

in extrapolations for the exponent.
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ABSTRACT 107

We study the properties of a model system that exhibits a transition

between ferromagnetic and helical order at a Lifehitz point, as interaction

parameters R and S compete. Here R E Jz/Jxy and S E Jz'/Jxy, where Jz

and Jz' denote interactions between nearest-neighbour and next-nearest-

neighbour spin pairs respectively in the z-direction, and Jxy is a

nearest-neighbour interaction between spin pairs in each x - y plane.

We calculate the high-temperature susceptibility series to order 8, 6, 5,

and 35 respectively for the Ising, planar, Heisenberg, and spherical

models (N = 1, 2, 3, and w). In order to verify our results, we derive

rigourous results which provide strong checks on the series coefficients.

Series analysis is focussed on the ferromagnetic phase. In particular,

we confirm scaling with respect to both parameters R and S. In addition,

we find that the critical region shrinks as the Lifshitz point is approached.

This is evident from analyzing the spherical model series where asymptotic

series behaviour is not evident, even at order 35. Finally, by exploiting

simple geometric ideas about the dependence of the correlation length on

R and S, we describe the full wave-vector and temperature dependence of

the structure factor.



1. INTRODUCTION

10
Recently, much attention has been given to the following

n-vector Hamiltonian

where the first two sums are over nearest-neighbor pairs

in the same and adjacent x-y planes respectively, and the

third sum is over next-nearest-neighbor spin pairs along

the z-axis only (cf. fig. la). This Hamiltonian was first

introduced by Elliott (1961), and the recent interest in this

model is due to the fact that it exhibits a transition,

as R and S vary, between ferromagnetic and helical order at a

Lifshitz point (Hornreich et al 1975 a,b). The helical phase

arises from the competition between the interactions R and

When S/ Rlis sufficiently negative, the helical phase is

energetically favored.

In this paper we will study the ferromagnetic phase of

this system by using high temperature series, while the

properties near the Lifshitz point, and in the helical phase

will be treated elsewhere. From previous work on this model,

using both mean-field theory (cf. Appendix A), and exact results

for the case n =.o(Hornreich et al 1976) it is predicted that

helical order exists for S(-IRI/4, and that spatially uniform

order exists for S)-IRI/4. Here, spatially uniform
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order means ferromagnetism for R>O, and metamagnetism

for R<O. Because of the symmetry of the system,

corresponding "staggered" t thermodynamic functions for

R<O, and "direct"' thermodynamic functions for R>O are

identical. Therefore in what follows, we consider the

case R>O only. Since the two parameters R and S determine

the type of order that exists, we call the model

Hamiltonian (1) the R S model. Figure 1(b) is a schematic

phase diagram.

An interesting feature of the ferromagnetic phase

is that series analysis indicates exponents which appear

to vary continuously with R and S, and this variation

is quite large near the Lifshitz boundary. However,

according to the renormalization group, one set of universal

exponents exists in the ferromagnetic phase, while a

different set of exponents exists in the helical phase

(Droz and Coutinho-Filho 1976, Garel 1976, Garel and

Pfeuty 1976). Consequently the exponents will change dis-

continuously as R and S vary through the Lifshitz point.

These apparently conflicting results are reminiscent

of the situation found in anisotropic systems. This

type of a system may be described by the R S model with S

TBy staggered, we mean alternation in successive x-y
by planes, rather than site alternation.



set equal to 0. It is well known that for any R#0O the

exponents are those of a three-dimensional system, while

for R=O the exponents change discontinuously to two-

dimensional values. Analysis of finite length series in-

dicates exponents that vary continuously from three to

two-dimensional values as R-0, and the interpretation

of this was the source of some controversy. Oitmaa and

Enting (1971, 1972) claimed that the analysis results

conflicted with universality, while Rapaport (1971)

pointed out that a continuous variation must occur if only

a finite number of series terms are analyzed, and as R0O

progressively more terms are required to probe asymptotic

behavior.

The same conclusion was reached independently by

Paul and Stanley (1971, 1972), who found that fo.r small R

the first few exponent estimates based on successive

ratios of series terms appeared to extrapolate to the

two-dimensional value, while at high order a trend to the

three-dimensional value was evident. Moreover,

they computed and analyzed series of order 20 for the

spherical model (n==), and found that as R decreased, the

order at which the true asymptotic behavior was evident,

increased. Thus the use of the spherical model series

served as an important tool in understanding the asymptotic

behavior of the Ising series as R becomes small, and as
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the critical region becomes correspondingly small. Because

the exponent behavior near the Lifshitz point is not unlike

that found in anisotropic systems, the n = 0 series will

therefore be used as a tool for understanding asymptotic

series behavior.

In section 2 we outline the series calculation procedure.

We also derive rigourous results for the RS model susceptibility,

and apply these to check certain of the series coefficients.

In section 3, we analyze the series in the ferro-magnetic

phase and confirm scaling with respect to both parameters R

and S. In section 4, we study the susceptibility series for

both n = 1 (Ising) and n =ac, and we give a simple geometric

interpretation of the fact that asymptotic behavior near the

Lifshitz point sets in only at very high order. Then, in

section 5, we discuss how this interpretation provides an

understanding of the fUll wave-vector and temperature depen-

dence of the structure factor.



2. THE SERIES AND A RIGOROUS RESULT

Using the renormalized linked-cluster theory

(Wortis et al 1969, Wortis, 1974), we have calculated

the coefficients aX(R,S) in the zero-field susceptibility

series

(2)

for Ising, planar, and Heisenberg spins (n=1,2,3) to

order L=8, 6, and 5 respectively. Here P=l/kT. We

calculate the a (R,S) for (L+1) (L+2)/2 different

combinations of Jxy' R, and S, and use these results

to solve simultaneous linear equations to determine the

coefficients Ajkl in the multinomial

ý *'K(3)

For n=l, the three-variable series in PJxy' R, and

S is also re-expressed in the form

In ('), the coefficients Bjkl are all integers. The

coefficients Bjkl for n=l, and Ajkl for n=2 and 3 are

presented in tables 1-3. Hence from (3) and (4), the

aj may be computed directly. This results in an enormous

f For example,when n=l,ao=l,al=4+2R+2S,
a 2=12+16R+2R

2+8RS+16S+2S 2 ,a 3 =34
2A+80R+32R 2+1 1 /3R 3+96RS+1OR2 S

+16RSa+ 80S+32S 2+1 1 /3S 3
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saving of computer time when series for many different

values of R and S are required.

Moreover, by expressing our results for arbitrary

J ,R, and S we can check many of the A jk1 and Bjkl.

Firstly, we verify known results for the linear chain,

the square lattice, and the simple cubic lattice by

taking the respective limits J =w J' =0, J =0 J' =-,
Z z Z z

J =J J =0, and J =0 J =J . More thorough checks
z xy z z z xy

are provided by genralizing to S#0O, the S=0 theorems of

Liu and Stanley (1972, 1973) (see also Citteur and

Kasteleyn 1972, 1973), which relate derivatives of X

with respect to R to the two-dimensional susceptibility.

Specifically, Liu and Stanley showed that for S=0,

(5A)

where X is the susceptibility of the two-dimensional
sq

square lattice. This result follows from noting that

the graphs which contribute to the term in the suscepti-

bility that is linear in R, consist of one R bond joining

two arbitrary planar graphs in adjacent x-y planes

(cf. fig. 2a). Since these planar graphs lie in

different x-y planes, they are completely independent.

Two inequavalent such configurations exist. Taking the

derivative aX/IR and then setting R=) singles out only

those contributions that are linear in R, and (,a) follows.

A second check comes from applying the same argument to
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the R=O case, with the result

(5b)

A third check involves the coefficient of X that

is proportional to RS. The graphical contribution to

this term consists of one R bond and one S bond) the

endpoints of which connect to 3 planar graphs (cf. fig.

2b). Because R and S are of unequal length, these 3

planar graphs must be mutually independent. Eight

inequivalent'such configurations exist. These configurations

are singled out by taking the derivative 32 x/aRDS and then

setting R=S=0. Thus we obtain

(5 c)

These theorems also hold if instead of using the

variables R and S, the Ising variables

p=tanh(#Jz)/tanh(PJxy) and o-=tanh(PJz')/tanh(PJxy)

respectively are used. Thus to any order L, these checks

verified 2(L+1) coefficients out of a total of

(L+l) (L+2)/2.

Note that the n=l susceptibility series of eq.(2)

(table 1) has the novel feature that the coefficients

A743 and A843are negative. Thhi. can be understood by the

following graph-theoretic considerations. In general,

A ýk consists of the number of self-avoiding walks (SAW)



that can be embedded on a lattice, with k-j-k

bonds in the x-y plane, j bonds in the z-direction,

and k bonds of length 2 in the z-direction minus

a disconnected graph contribution. This contribution

is the number of disconnected graphs with the same

number of bonds as the SAW, embedded so that bonds

from disjoint graph pieces share the same lattice

bond. In systems previously studied the SAW contri-

bution predominates, and series coefficients are

positive. However, the R-S model possesses a much

more complicated graph topology and affords the

possibility of a large disconnected graph contribu-

tion due to multiple occurrences of disconnected

graphs containing one S bond and two R bonds.
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Our analysis of critical properties in the ferro-

magnetic phase is guided by the genralization of the

scaling hypothesis to this system: there exist 'lumbers

aH, a,,aR, and aS such that for all positive A,

(4)

where G is the Gibbs potential, H is the magnetic field,

and T(R,S)Ek[T(R,S) - Tc(0,0)]/JX . The new scaling

power a5 equals aR since G(H,T,O, S) = G(H,T,S,O) (if

R=O and S#0, the R-S model reduces to 2 interpenetrating

meta models). A consequence of eq. (4) is that Tc obeys

the functional relationship

ZC 'U(X&S)\ z P'TJMS)
(7)

Setting XaR R=l, we obtain T (R,S)=RaO /aR - (1,S/R),

while if XasS=l, we have T (R,S)=Sar/as T (R/S,1). Thus

along any ray in the ferromagnetic region of Fig. lb,

T (R,S) varies as R1/0 and as S1/1 (where 1/0=aT/aR=a/aS )

with an amplitude that depends on the ray chosen. For

the case nrl, we test the validity of this prediction by

using Pade analysis on the series to find T (R,S). On
c

a log-log plot of T c versus R, a line of slope 1/ý=i/7

fits the small-R data well over a substantial range (cf. fig. 3).

The breakdown of linearity is due to the fact that at

very small R, the series are too short to findý the critical

temperature accurately, while for sufficiently large R,



117
scaling is no longer valid (Harbus and Stanley 1973 ).

For n=2 and 3 the series are too short to show a linear

range when plotting T (R) versus R and thus dctaore not

shown.



4. THE SUSCEPTIBILITY EXPONENTS FOR THE ISING AND SPHERICAL
MODELS

When S<O and R>O, the interactions R and S compete. This

competition is necessary for the appearance of helical order

(cf.fig. ib), and it is interesting to study the effect of

this competition on the susceptibility as R and S vary. In

what follows we set R=1 to eliminate crossover effects

between two and three dimensional ordering. The series are

analyzed by complementary use of both ratio and Pade methods.

The ratios ptjaI/a -1 oscillate when plotted against 1/k

due to the "antiferromagnetic singularity" BAF on the negative

B-axis, found by examining the Pade table for the logarithmic

derivative series for X. We reduce these oscillations by

using the transformation 8+•/(~+8//AF) in order to extrapolate

the %c= behavior of the p . Such a bilinear transformation

introduces a new but spurious singularity at BSp on the

positive real axis (cf. fig. 4) which has a substantial

effect on series extrapolations. The exponent associated

with BSP is equal to the negative of the susceptibility

exponent (Paul and Stanley 1972). The effect of this new

singularity on series extrapolations is minimized by

multiplying the transformed series by (1-B/BSP) , where

y is a rough estimate for the susceptibility exponent. The

series obtained after both transformations possesses a

physical singularity which is isolated from all other

singularities, and the ratios pe vary smoothly in R. From
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the p. we form the sequence of estimates y~El-R(l-pi!kT4)

for the susceptibility exponent y, where kTk=zpt-(£-l)p-£.

is a sequence of estimates for the critical temperature.

The y are shown in figure 5 for three representative

values of S based on Ising series. For n=2 and 3,

the same trends in the y. are found as in the case n=l.

However, the n=2 and 3 series are too short to provide

accurate estimates for y, even when S=0. Therefore, these

data are not shown.

At first sight, the n=l data indicate that y does

indeed depend on S. However comparison with a similar

analysis of the corresponding nmo series (cf Appendix 8)

shows that this is not the case. As shown in fig. 6, for

negative S the yR eventually have a downward trend to the

univeral value of y=2 (Joyce 1966). The trend appears

for large £ ., and indicates that the critical region

shrinks considerably as the Lifshitz point is approached.

This can be understood physically by considering figure 7.

When S=0 the system is isotropic (since R=I here) and

a correlated region of spins is roughly speaking, a

sphere of diameter 4, whereg is the correlation length.

For a fixed value of T-T ,as S decreases, the competition
c

of R and S results in a corresponding decreases in the E-

correlation length, and the correlated region becomes

more oblate. The number of enclosed spins thus

decreases, and this reduces the degree of co-operativity



120)
in the system. Therefore, for negative S, one must probe

closer to Tc by generating more series terms, in order that

the asymptotic three-dimensional behavior is evident. At the

Lifshitz point, the z-correlation length varies as the square

root of ther-y correlation length (Hornreich et al 1975a).

This marks the point at which the effects of the competition

between R and S are most pronounced. The shape of the cor-

related region.,is now quantitatively different,in that the

volume varies as gd-½, where d is the spatial dimension,

d
rather thang . The critical exponents are also different

at the Lifshitz point.

We can gain more insight by looking at the n=w series

in higher dimensions. Now ferromagnetic interactions exist

in (d-1) - dimensional layers, while competing interactions

exist along one axis only. Therefore, the influence of these

competing interactions should become relatively less important

as d increases. This is reflected in our analysis, where for

comparison with figure 6, we show in figure 8 the sequences

f for various S in both four and five dimensions.

Furthermore, in five dimensions, it is clear that even when

S = -¼, i = 1, while in four dimensions it appears thatý ~ 1

when S = -¼. This indicates that the dimension at which

mean field exponents first occur, the marginal dimension-

ality, etc, lies between four and five. In fact, from the

Ginzburg criterion (Als Nielsen and Birgeneau 1977 and

references therein) it may be shown that d = 4.5 (Hornreichc
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et al 1975 a). At dimension 4.5, the volume of a correlated

region grows as 4.5-0.5 4, and thus mean-field exponents

are expected.



5. THE STRUCTURE FACTOR 122

In the previous section, we discussed how competing

interactions influencedthe size of a correlated region.

By translating the discussion into Fourier space language,

we will obtain insight into the full dependence of the

structure factor -S( Z KaS.S) ae on both

temperature and q. In addition, we will see in a simple

fashion why series extrapolations give misleading results

at low order when R and S compete.

First consider S=0. In figure 9a we sketch the

dependence of .(q,T) on qz and T. Since (T)= ,T),

the q=O structure factor diverges as TtTc, and this is

reflected in extrapolations based on finite-length

series for X . Now suppose qz ,q x =qy=0 where q is small.

For this value of q, the first few terms in a series for

S(q,T)differ by only a small amount from the first few

terms for X . Therefore as T decreases the structure

factor j(q,T) initially increases and appears to extrapolate

to infinity. However at T , (-,T C) q , which is

finite, and in fact the structure factor appears to

extrapolate to a divergence at some temperature below Tc

The extrapolations of (qz,T) for a range of small qZ thus

lead to a line of apparent singularities in the T-q z plane

(cf. fig. 9a). This line of apparent sigularities
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interferes with extrapolations of .2(4=0,T) to the physical

singularity, just as nearby singularities in the complex

B-plane interfere with the physical singularity. As

more terms in the structure factor series are computed,

the range of qz for which an extrapolated singularity

appears, becomes smaller. The physical singularity

becomes more dominant, and extrapolations for y improve.

Now consider S<0. The interactions R and S now

compete and the correlation length ? is thus decreased

relative to the case S=0. Since ý-1 is proportional to

the half-width of. (q,T) the qz#0 fluctuations in the

structure factor are enhanced compared to q =0 fluctuations
z

(cf. fig. 9b). This enhancement in fluctuations in-

creases the range of q values for which an apparent

singularity exists in, (qz,T). Thus, it is necessary to

compute correspondingly longer series in order that extrapola-

tions techniques will converge to the physical singularity.

This argument is verified by calculating the high-temperature

series for the structure factor for the R-S model.

It is interesting to note that the effect that we

have described is a precursor of the transition to helical

order; in the helical phase ,.(',T) diverges for some non-

zero value of q. The onset of helical order is

characterized by a structure factor independent of qz to

lowest order (cf. fig. 9b). When this occurs, the competition
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between the interactions R and S is maximized and

series extrapolation methods converge quite slowly.



6. CONCLUSION 125

In summary, we have studied the R-S model in which

competing interactions strongly influence the properties

of the ferromagnetic phase. We have calculated the high-

temperature series to order 8,6,5, and 35 respectively

for the Ising, planar, Heisenberg, and spherical

models. These series were analyzed for a range of R and

S corresponding to the ferromagnetic phase; in particular

for the Ising series we verified 2-parameter scaling

in both R and S. Near the Lifshitz point, we found

by studying spherical model seriesthat asymptotic

series behavior is not evident unless quite lengthy

series are analyzed. This arises because of the

competition between the interactions R and S. Geometrically,

these ideas are simply understood by considering the full

wave-vector and temperature dependence of the structure

factor 2(4,T).
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APPENDIX A. MEAN FIELD THEORY 27

The mean field theory, while not generally providing

correct predictions for critical behavior, does give physical

insight into many of the physical features of the RS model.

In fact, series expansions may be regarded as a systematic

improvement on the predictions of mean field theory (e.g.,

the mean field theory agrees with series expansions to

lowest order).

One principal advantage of the mean field theory is that

it may be systematically applied to yield unambiguous pre-

dictions for all four phases that occur for the RS model

(cf. Fig. ib).* To find the ordered phases, we minimize the

classical energy. This is accomplished first by noting that

the anisotropy in the system is along the z axis, and therefore

below Tc, spatial variation in the spin expectation value

occurs along the z axis. That is, s- = <s * cos q-r =s<s c*$S
r o

where s and s- refer to the spin at the origin and at r
o r

respectively, and q is the wave vector describing the ordered

phase. The energy per spin becomes

E KY (W2RJco S 9, c+ IS c 6)< S.-4o)

( A 1)

where J (q) is the Fourier transform of the exchange interactions

*Many results of mean field theory are well-known, and useful

pedagogical accounts may be found in Brout (1965) and Smart

cloo6(.) .
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in eq. (1). Minimizing eq. (A 1) with respect to q yields

three solutions corresponding to commensurate order when

S > -R) /4, either ferromagnetic (qo = 0) or antiferromagnetic

-1
(q =1Y), and incommensurate order,qo = cos (-IRI/4S)

when S4 - IR| /4.

The critical temperature at any point in the R-S plane

is found from the condition

(A 2)

This may be written as kT = J (4 + 21RI+ 2S) for commen-
c xy

surate order, and kT = J (4 + 21RI cos q + 2Scos2q )c xy o o

J (4 - R2/4S - 2S) for incommensurate order, and from
xy

these formulae, we can describe the critical surface.

For the commensurate phases, the lines of constant Tc

are inclined at an angle of 450with respect to the R or S

axes, and these lines form part of the diamond shaped figure

shown in figure 10a. Therefore, the critical surface consists

of two planar sections, each of which is inclined from the

horizontal R-S plane by an angle of tan-i 1-r••

In the imcommensurate phases, the critical surface can

be illustrated by considering the critical line for fixed

R, and decreasing S, starting from the Lifshitz boundary.

This curve initially drops, and then there is a broad trough

at S =-IRI/IT (cf. Fig. 10b). As S-9 - o , the curve becomes

asymptotically linear, and kT - J (4-2S). Therefore, the
c xy



critical surface becomes a pane inclined from the horizontal
-1

RS plane by an angle of tan 12. These geometric features are

shown in figure 10.

Finally, the nature of the phase transition can be studied

as T -- T by considering the structure factor,
c

-i, 'T - 3X45 [4 bk•''S -"Ik*5 +%q .•s__ .i-

+Iit_ _ 4- 2v11+1 35 (A 3)

Here t IT - Tc (0)] /T (), and Tc (0) is the critical

temperature at q = O. When S > -IRI/4 the coefficient of q

in (A 3) is positive, and a mimimum of -l(q) occurs at q = 0

(cf. fig. 11). This corresponds to the fact that at any T> T

+
the largest fluctuations are for q = 0, and as T -9 T these

c

fluctuations, the susceptibility, diverge, while fluctuations

for q = 0 remain finite.

However, when S - -IR1/4, the coefficient of q2 in (A 3)

is now negative and a minimum ofJ-1 (q) occurs at non-zero

q. An approximate expression for q2 may be found by mini-

-i
mizing S (q) with respect to q, and this gives,

(A 4)

-1
This expression agrees with q = cos (-IfRI/4S) to lowest

order in 1 + JRI/4S. As T--Tc + (q ) diverges, and fluctua-

tions for all q t q remain finite (cf. +ig. 11). The onset

of helical order occurs whenIR)+ 4S = 0, and here the coeffi-
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cient of q in (A 3) vanishes. This condition marks the

transition point between the dominance of non-zero wavelength

and zero wavelength fluctuations, and therefore the tran-

sition can be regarded as an "instability in Fourier space."

At this instability, fluctuations of small non-zero wavevector

are just as important as zero wavelength fluctuations for

T >Tc, and the structure factor is no longer Lorentzian, but

rather is much less peaked about q=O (cf fig. 12). Hence,

one might expect that the critical behavior os a system at

stuch an instability is markedly different than the usual

critical behavior, and this is found to be the case (Hornreich

et al 1975,).

Physically, the condition IRi+ 4S = 0 also marks the point

at which the competing influences of the R and S interactions

just balance. When this occurs, spin correlations in the

z-direction are drastically reduced (cf. fig. 7) and the nature

of the phase transition is quantitatively changed.
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THE SPHERICAL MODEL

We consider the R-S Hamiltonian in the spherical model

limit for arbitrary dimensionality d,

(Bl)

where the first sum is over nearest-neighbor spin pairs

in the same (d-l) dimensional layer, while the last two

sums are over nearest-neighbor and next-nearest neighbor

spin pairs along one axis (the z-axis). The spins si

can assume any value s .<+- subject to the constraint

S= N where N is the number of spins in the system.

It will be more convenient to rewrite (_ •1) in the

following form,

'(B2)
Most of the thermodynamic properties of this system

are determined by the locationof the partition function

saddle point, and this is given by the condition

(Berlin and Kac 1952, Joyce 1966),

-i

f (B3)

where j is the vector distance between the origin and

site j, z is the saddle point location, and the
sp

integral is over the first Brillouin zone. We define
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;o 3~ and C~O~r+ 3;JZ,;·-c•' /./.• , and now eq (B3) can

be written compactly as,

(B4)

,,o

The last equality defines P , and for the R-S model in d

dimensions we have explicitly,

-& (2T)) L (d-CI *) R+S 1
(bo)

and this integral may be evaluated directly.

The zero field susceptibility can be expressed in

terms of the saddle point as (Berlin and Kac 1952),

) SP (B7)

Thus to generate the high-temperature susceptibility series

we need to revert the series in eq. (B 6) in order to

express 1/Is p as a series in J/kBT. That is , we have
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Zjo (B 8)

Substitution of this series in eq. (B 7) then leads

to the desired result.
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TABLE CAPTIONS 13 5

TABLE 1: The coefficients Bjkl in the reduced susceptibility series

for n = 1.

TABLE 2: The coefficients Ajkl in the reduced susceptibility series

for n = 2.

TABLE 3: The coefficients AjkI
for n = 3.

in the reduced susceptibility series

Aý ýe.,- R3 S

k(TR



Table 1 (a)-(i)

k=0

0

4

12

36

100

276

740

1972

5172

136

1 2 3 4 5 6 7 8

16

80

336

1264

4432

14768

47376

2

32

240

1392

6680

29136

116528

2

48

512

3888
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124720

2

64

888

8544
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0

1

2

3

4

5

6

7

8

2

96

1968

2

112

(b) k=1

1 2 3 4 5 6 7

16

80

336

1264

4432

14768

47376

8

96

672

3680

17376

74208

294624

10

240

2360

17168

100000

517648

8

384

5504

52032

378272

8

512

10032

120960

8

640

15872

8

768

(a)

2

80

1376

16080



31 2 3 4 5 6
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(c)

2

3
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8 1
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1632
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10
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16

2560
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116352
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100
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k=2

0
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11664

104192

725488

2

32

240

1392

6680

29136
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16

288

2720
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110336
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) k=3

0

(d

3

4

5

6

7

8

2

48

512

3888

23600

124720

24
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7520

65760
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k=4

0

(e)

4

5

6

7

8

2

64

888

8544

63216

32

1056

16448

175520

J
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k=5
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2

80 40
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k=6

0 1 2

96 48

1968 2336 220

(h) k=7

0 1

(i) k=8
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Figure l(a) The three interactions included in the

Hamiltonian (1).

(b) The R-S model phase diagram, showing the

four ordered phases and the Lifshitz

boundary.

Figure 2(a) The high-temperature graphs which contribute

to the term proprtional to R in the

susceptibility. The wavy lines represent

the set of all arbitrary bond configurations

on one x-y plane only. Another

independent configuration is obtained by

permuting 0 and r

(b) The graphs which contribute to the RS term

in the susceptibility. Six more independent

configurations are obtained by permuting

the R and S bonds, and O and r.

Figure 3 Log-log plot of T (R,S) versus R to test
c

the scaling relation, •c(R,S)=RaV/a, c(1,S/R).

The inverse cross-over exponent, 0-l=at/aR is

4/7 (Abe 1970, Suzuki 1971, Liu and Stanley

1972, 1973). The straight lines have

slope 4/7. Data are shown for three representa-

tive rays in the ferromagnetic region of

figure lb.



Figure 4

Figure 5

Figure 6

140
Singularity structure of the susceptibility

series in the complex S-plane,(a) before

transformation, (b) after the bilinear

transformation. The antiferromagnetic

singularity is moved to -o, while a

spurious singularity is introduced at

+ýAF' and the physical singularity is

moved to ýc =B /(l+c /~AF ) The second

transformation we use removes the spurious

singularity.

Plots of the successive estimates yQ, for

the susceptibility exponent based on Ising

series for three representative values of

S. The arrow marks the true value of y.

Plots of the successive estimates q~, for

the susceptibility exponent based on the

corresponding three-dimensional spherical

model series. In (a) we show the results

when the series are analyzed by the methods

described in the text. However, a Pade

analysis of the raw series reveals an

additional singularity on the positive real

B-axis located at Aa , with residue aX, •

This singularity is somewhat more distant

from the origin than the physical singularity,

and thus the convergence rate of series



Figure 7

Figure 8

Figure 9(a)

141
extrapolations to the physical singularity

is reduced. Therefore for an improved analysis,

we first multiply the raw series by (l-B/Bad •dAadd

and then use the methods of the text. The

resultant yI are shown in (b). Note that a

downward trend in the yk occurs for k>20

when S=+0.15, and this-trend is much more

apparent in (b) than in (a).

A correlated region of spins is a sphere of

diameter • for S=0. For fixed T-Tc, as S

decreases, and the correlated region becomes

oblate. At the Lifshitz point ý

giving rise to quantitatively different

critical behavior.

Dependence on 1/l of for (a) d=4 sand (b)

d=5 hypercubical lattices.

The complications that occurred in analyzing

the three dimensional series (cf. fig. 6)

do not occur for d=4,5.

The structure factor in T-qz space, where
z

q=(q ,q ,q ). For q=0 the structure factor

is just the susceptibility, which diverges

as T-T . For fixed Tthe width of the
c

structure factor peak is related to the

inverse correlation length -1 (T) which

vanishes at T . (for T=T , the structure
c c



? -2+) For q
factor varies as qz For q =q,

where q is small, the limiting value of

S(',T=T c ) is therefore finite; however

extrapolations of finite-length structure

factor series will lead to an apparent

singularity. Thus in addition to the true

singularity at qz = 0, there will be an

entire line of apparent singularities

(shown dashed) in the T-qz plane. (Note

that the small maximum inj (q,T) at positive

T-Tc is expected from the work of Fisher and

Burford 1967).

(b) The dependence of the normalized structure

factor on qz for fixed T)Tc. For negative S

the correlation length is decreased and

the peak broadens. At the Lifshitz point

the peak has a "flat top" corresponding

to the physical fact that fluctuations of

many wavelengths are equally important.

Figure 10 (a) A map of the critical surface in the RS plane,

showing contours of constant Tc. A broad

trough in this surface occurs at S = -IRI /_ .

(b) A critical line for R = 1, and varying S.

Note the exaggerated vertical scale so that the



Figure 11

Figure 12

143
trough is readily apparent.

The inverse structure factor for fixed T> T ,

in the ferromagnetic and helical phases, and

at the Lifshitz point. The minimum of S (q)-1

determines the ordered phase wave vector qgo,

and this may be found by minimizing S(q)-l.

The q-dependence of the structure factor for

for fixed t a (T-T)/T, > 0. At the Lifshitz

poLnt. the coefficient of q2 in (A 3) vanishes,

and the peak is not a Lorentzian. However, in

both the ferromagnetic and helical phases the

peak is a Lorentzian centered about qgo
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Abstract. We study the transition between spatially uniform and

helical order for a model system with competing interactions. To this

end the high-temperature series for the expectation values of 2A

and t* with respect to the spin-spin correlation function are calcu-

lated to eighth order in inverse temperature for arbitrary strengths

of the competing interactions. From these series we find the transi-

tion line between uniform and helical order - the Lifshitz boundary.

This boundary differs from what was previously believed. In addition

we compute the ordered state wave vector ,, and we find that as the

Lifshitz boundary is approached, o--io With an associated exponent of

1/2, the mean field value.



161
The problem of helical order for systems with cmmpeting inter-

actions was treated independently by Kaplan (1959), Villain (1959),

and Yoshimori (1959). By using a mean field approach, ground state

spin configurations were calculated. It was found that the magneti-

zation varied periodically in the lattice, with a wave vector that

depends only on the exchange interactions, and is incommensurate

with the lattice structure. Since their early work, many materials

that exhibit helical order have been found (see Cox 1972 for a review).

Recently, renormalization group techniques have been used by Horn-

reich et al (1975 a,b), Droz and Coutinho-Filho (1976), Pfeuty and

Garel (1976), and Nicoll et al (1976 a,b, and 1977) to study helical

order. The helical state is characterized by a wave vector 1o

which is a continuous function of exchange interactions. One focus

of study is the transition between spatially uniform and helical

order)where j(-*o. This transition is called the Lifshitz point.

In this article we investigate the properties of the Lifshitz point

by calculating and analyzing high-temperature series for the

Hamiltonian,

<2,>

The first two sums are over nearest-neighbour spin pairs in the same

x-' plane, and adjacent x-&Splanes respectively, while the third

sum is over pairs separated by two lattice spacings in the

t -direction.
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For S positive the ordered state is ferromagnetic if R is

positive, and metamagnetic if Pf is negative. For negative S the

nearest-neighbour and next-nearest-neighbour intereactions compete

(cf. fig. lQ). In mean field theoryzwhen S4-\R IL , the spin con-

figuration which minimizes the free energy is one in which the

magnetization varies sinusoidally in . (cf. fig.1b). When this occurs,

the order parameter is the helical magnetization M , and the associated

wave vector (which is along the z-axis) is cob- (-'\\/.5).

In order to study the transition to helical order we need to

consider the response function,

(2)

where N4 is the magnetic field conjugate to M , and the first equali-

ty defines the *- structure factor JL~S.*) ; here (- (X,~. ,

To investigate the Lifshitz point, where .o - o , we expand

(2) in the following form,

bf= - L bi - +r/• . .

X -ctl~L~) Z! + q~l/t

(Ia)

(310)
('B<,,)

The second equality defines the 1-moments of (SoS~) , and

-X - _8 (0) is the direct susceptibility. Equivalently, we

write,
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(4)

The odd terms in I of (3) and (4) vanish by symmetry.

When uniform order occurs, -6aI has a minimum at 110 ,

and at the critical temperature X-=IO . However if the coefficient

of IZ in (4) is negative, then a minimum of -t.(4) occurs for

non-zero q , and helical order is present (cf. fig. 2.). The vanish-

ing of the coefficient of qc in (4) is therefore the transition

between helical and uniform order. Consequently the Lifshitz boundary

in R-S space is found by the condition (•'/ = 0 . Furthermore,

by minimizing 8 (• with respect to q , we find thqt the wave vector

of the helical order s),

Thus the series for , (t') and (T<>) are required to study the

Lifshitz point in the approximation scheme that we have introduced.

The series. By using a computer program based on renormalized

linked-cluster theory (Wortis et al 1969 , and Wortis 1974)

we have calculated <-c) anA<d(Kto order 8 in /•-i/ 0 ( -

Boltzmann's constant, T= temperature). We present the series in the

following form that was found convenient for the susceptibility series

(Redner and Stanley 1977).

(6(

ZKI>

c9)
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As was the case for the susceptibility, many series coefficients can

be checked by generalizing the results of Liu and Stanley (1972,1973)

to the functions <(') av< (<). We find

susceptibility. To any orderSj, we can checki1. ) coefficients out

of a total of (U&t)/2 coefficients.

The Lifshitz boundary. We find that the Lifshitz boundary occurs for

smaller values of S/R than predicted by mean field theory (cf. fig. 3b).

Our reasoning is as follows. When uniform order is present, all terms

in the series for (t/Xf-• are positive. As the system changes from

uniform to helical order,< V/X changes sign and some of thebRmust be

negative. Low order series are not expected to show the correct

asymptotic behaviour, and series extrapolation techniques reflect this

situation. For<i'/( positive, the successive ratios ,P-bL/bL- show no

curvature when plotted against t/t, suggesting the series extrapolate to

a positive divergence. We find that at some value of S smaller than

\q\/) bi changes sign. As S becomes more negative, successive

terms b, b.... change sign and eventually all 8 calculated býA become

negative, so that all 8 Pt are positive. Once this has happened, a

plot of versus VI displays strong downward curvature, showing a trend
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to negative p , (cf. fig. 3a). This suggests that a sign change in the

b6 occurs beyond order 8 and that the infinite series still sums to a

positive number. As S decreases still further, the curvature in the ratios

suddenly disappears, suggesting that the sign change in the bino longer

occurs. We interpert this sudden straightening of the ratio plots to mean

that (2>/I is negative, and the transition to helical order has occurred.

It is of course possible that curvature in the ratios and a sign change

in the gAoccurs at very high order (so that <xZ)/~ is actually positive).

Were this the case, then the sign change in (ei)/9( would occur for even

more negative S and the Lifshitz boundary would be even further displaced

from the mean field result S=-U1\/+.We note that the pkf or the <V>)/X

series oscillate when plotted against'ydue to the antiferromagnetic

singularity in X. For this reason, it is easier to see the straightening

if we plot <(t ratios instead (cf. fig. 3a). The conditions <J>/ X:Dor

<ý1-o give consistent results for the Lifshitz boundary as shown in

figure 3b.

We next consider the exponent,&, introduced by Hornreich et al

(1975 a), which describes the vanishing of the ordered state wave vector

ro near the Lifshitz point. Specifically, Xoi (T-XL•• where Xt 5/R

and Xis the Lifshitz point value. Fixing KR1 i and varying S, we evaluate,

at the estimated critical temperature, the series for aofrom eq. (5).

We estimate (cf. fig. 4) that Y•-.~ oL, which is consistent with mean

field theory and renormalization group calculations (in which correctinns

top•A:-Yare of second order in C . The amplitude however is a factor of

9 larger.
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To summarize, we have found a criterion for the Lifshitz boundary

in terms of z-moments of spin-spin correlation function. Series analysis

shows that this Lifshitz boundary is shifted from what is currently

believed. The ordered state wave vector however, seems to vanish at the

Lifshitz boundary with an exponent predicted by mean field theory, but

with an amplitude that is almost a factor of nine larger.

The authors wish to thank Drs. T S Chang, G F Tuthill, W Klein,

A M A Hankey, and especially Mr. P J Reynolds and Dr. J F Nicoll for

enlightening conversations.
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Table 1l The coefficients Cjt in the reduced second moment series.

0o

Table 2 The coefficients O tk in the reduced fourth moment series.

(2coe t, JkBLJ)~L~(J) t*X131



Table 1 (a)-(i)

k=O

0 1 2 3 4 5 6 7 8

(a)

1
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572464

32

704

8256

70208

484864

50

1360

19424

197584

(b) k=1

0 1 2 3

400

11904 616

175680 22528 880

1807232 402304 38272 1192

169)

16

80

336

1264

4432

14768

47376

72

2336

39456

98

3696 128

64

320

1344

5056

17728

59072

189504

40

480

3360

18400

86880

371040

1473120

112

1920

17792

123008

707840

3597952

232

5376

63744

542912

3471728
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2 3:

3 38

4 268

5 1472'

6 6950

7 29683

8 117849

72

1216

11264

78016

449728

2289856

128

2816

33024

280832

1939456

208

3360

30368

206432

1176320

5936608

632

13280

150240

1240160

8379040

1440

37920

523328

5148064

640

14336

165696

1385472

9418112

2320

65152

913920

9057664

6352

217088

3620672

1360

41312

604096

6141280

5304

202008

3569408

16032

747104

2

4

8

0

4

2

6

9408

475008

3664

177408

14648

29120

2368

92928

1687808

4

k=3)

5248

(d

3

4

5

6

7

8

(e

2
4

5

6

7

8

k=4)

__

I\



(f) k=5 17i
j 0 1 2 3

5 200 f

6 5440 2760

7 77696 88032 14416

8 790336 1446688 585088 40584

(g) k=6

j 0 1 2

6 288

7 9344 4720

8 157824 177440 28672

(h) k-7

j 0 1

7 392

8 14784 7448

(i) k=8

8 512



Table 2 (a)-(i) 172
(a) k=0

o 0 1 2 3 4 5 6 7 8

0 0

1 0 2

2 0 16 32

3 0 80 384 162

4 0 336 2688 2608 512

5 0 1264 14720 23552 10496 1250

6 0 4432 69504 160048 117504 31312 2592

7 0 14768 296832 911920 964352 421472 76928 4802

8 0 47376 1178496 4602160 6493696 4085968 1214592 164976 8192

(b) k=1

1 32

2 256 328

3 1280 3936 1600

4 5376 27552 26112 5320

5 20224 150880 237056 111744 13888

6 70912 712416 1616384 1263744 360960 30664

7 236288 3042528 9227264 10428992 4942080 956800 59968

8 758016 12078584 46628376 70446752 48338432 15504640 2192396 107080
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3

18688

389120 58768

4367616 1541216

35825664 21084352

240857600 205580896

2

3 6

4 43(

5 2351

6 1112

7 4749

8 18855

(d) k=3

3 2.

4 41

5 376

6 2560

7 14590

8 736341

115648

2951680 375384

39684096 11926144 963840

382199296 192732032 37246464

489280

14913536 1700640

235291904 63933536

2106200

4537088

(c) k=2

148480

4758528 321424

77806592 12269568

512

144

008

520

064

312

936

592

728

832

768

720

560

4240

67872

610976

4141664

23561984

118768096

24536

495968

5489760

44618720

298241824

620800

k=4)

J

(e

4

5

6

7

8

8192

167936

1880064

15429632

103899136

92448

2286624

30337088

289959328

_ _ _ __ __ __ _ _
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(f) k=5

5 20

6 500'

7 6743

8 65375

000

992

552

488

266856

7869792

122642848

1603264

57193984

k=6

41472

1230848 643504

19433472 22139168 4376320

(h) k=7

0

7 73832

812639616 1364216

(i) k=8

8 131072

174
3

6076176

)(g

6

7

8



Figure Captions 1 75'

Figure 1 a) The competing nature of the interaction for the case Ro 5<o.

If spins 1 and 2 are pointing up, then the R interaction

tends to point spin 3 up, while the S interaction has the

opposite effect.

b) An example of an ordered state for /Rin the helical region.

The wave vector c~, is parallel to the spin axis, and the wave-

length for the ordering shown in 6 lattice spacings.

Figure 2 The dependence of the inverse structure factor as a function of

for fixedr'>T,. Writing •'(•)t %"1i t (RST)•o (Rtb• i.T)C 4 "'.

then a minimum in -E(fIcan occur at non-zero % when o(R.ST)< o.

Figure 3 a) Sample plots of successive ratios pof the <(i) series for R=l and

various values of S. The straightening of the ratios is

interpreted as a sign change in (<Z) . Similar results are

obtained for R = 0.ojo.1 L,.3, ov .(.

Figure 3 b) Estimates for the Lifshitz boundaries based on the two criteria

< Z)/ý:oand on <t-) =o . The Lifshitz boundary predicted by

mean field thoery is shown for comparison.

Figure 4 Log-log plots of 2 versus (x-xL() for the case 4.- Here

~ 4'R, and xLiR) is the location of the Lifshitz point. Shown

are both series estimates (zkLCq) 0-o.Z3toq ), and mean field

theory (xr--o.2s fo\ R ). The straight lines have slope

unity, indicating that v.*(x-~ror-VZ. The amplitudes differ

by a factor of 9,as might be expected based on

further work which indicates that well inside the helical

series meanfieldregion . = cv as shown in the inset.
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Abstract. We study the properties of the helically ordered phase

for a magnetic system with competing interactions. To this end

the high-temperature series for the structure factor are generated

for arbitrary q, to order eight for Ising spins, to order six

for classical planar spins, and to order five for classical

Heisenberg spins. Analysis of these series shows that the wave

vector qo associated with the helical phase is temperature depen-

dent. Furthermore, we can locate the Lifshitz point, where q-+ 0O,

and our results agree with an earlier independent study, which

predicted the location of the Lifshitz point to be different than

that given by mean-field theory. Further analysis indicates

different exponents for the ferromagnetic and helical phases.



In two previous articles (Redner and Stanley 1977 a,b), which we will

refer to as I and II respectively, we studied a model Ising system in which

there exists a helically ordered phase. Here we will extend our study

to include Ising, planar, and Heisenberg spins, n=1,2, and 3 respectively.

The Hamiltonian is,

(1)

where the first two sums are over nearest-neighbour spin pairs in the

same and adjacent x-y planes respectively, and the third sum is over

next nearest-neighbour pairs along the z-axis. The type or ordered

phases that exist depend on the values of R and S, and hence we call

the Hamiltonian (1) the R-S model. For positive R, and S sufficiently

negative (see II, and also Kaplan 1959, Villain 1959, Yoshimori 1959),

a helically ordered phase exists, which may be characterized by a helical

magnetization M, which varies periodically in z, and in general, the

wave vector qo associated with M is incommensurate with the lattice.

For the R-S model qo is always along the z-axis, and in what follows

we shall write qo instead.

Near the critical point fluctuations of wave vector qo become

+
large, and as T -Tc , the response of M with respect to its conjugate

field H diverges in a manner analogous to the divergence of aM/Ja for

ferromagnetic systems. Thus, a study of the response function aM/ŽH is

necessary in order to understand the phase diagram for the system. It will

prove to be useful to write IM/c" in an equivalent form that defines the

structure factor (qo ) .

r r (2)
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For the R-S model, mean field calculations predict that in the helical

and

phase qo = cos -1 (-IR)/4S),vthe Lifshitz point (where qo0 - 0) occurs at

S = -IR)/4 (Elliot 1961). However, recent calculations indicate that qo

is temperature dependent (Villain 1976). This feature iS also found

in experimental studies of materials which are believed to be described

by the R-S Hamiltonian (Cable et al 1961, 1965, see Koehler 1965, and

Cox 1972, for reviews). In this article we present the first high-

temperature series analysis of this problem. Previously, only mean-field

theory predictions existed. We find that qgo is indeed temperature de-

pendent, and that the Lifshitz point is different that S - -IRI/4.

Further analysis indicates a structure factor exponent which is different

in the ferromagnetic and helical phases.

By extending a program based on renormalized linked-cluster theory

(Wortis et al 1969, Wortis 1974), we can generate series for each two

spin correlation functions (SoS?) . It is then simple to perform the

required sum in (2) to obtain structure factor series for arbitrary q.

From the structure factor series, the temperature dependence of qo

can be made evident by the following analysis. First, by expanding the

inverse structure factor for small q we write (see also II),

(3)

In the helical phase, the functions A(T), B(T), C(T)... are all

positive, and )-1 is the inverse direct susceptibility. The structure

factor for fixed T i's peaked at qo and the location of this peak may
-I

be found by minimizing Z(q) with respect to q, or equivalently maxi-

mizing (Ag2 - B%4 + C4 +...).



In mean-field theory, the functions A,B,C..., which are related to

the moments of the two-spin correlation function, are temperature

independent, implying that qo is also temperature independent; in fact,

-i
one can readily show that qo = cog-1 ( -\RI /4S). However, it is actually

the case that the functions A,B,C... each have different temperature

dependence, and therefore qo must depend on temperature. This behavior

is verified by examining the q dependence of the coefficients a (q) in the

series expansion for S(q) = a• %c3t , where f= L/AT . The coefficient
L'o

al (q) is identical to its counterpart found by using mean field theory,

and therefore al(q) versus q is peaked at cos-1 ( -IR)/4S). If we fix

R=l, then when S> -0.65, we find that the peak of ap(q) versus q occurs

at progressively lower q as2 is successvely increased (cf.fig. 1) and

therefore the peak of j (q) versus q must move to lower q as T is

decreased (cf. fig. 2). For S<-0.65 the opposite behavior occurs. Our

estimate for qo at Tc is based on observing, from the form of the structure

factor in eq (3), that ý(qo) diverges at T , while J(q) for q 0 qo

extrapolates to an apparent divergence at lower temperatures (cf. fig. 2).

Therefore, the peak of Te(q) versus q locates qo and from this method

we find that the onset of helical order occurs at S = -0.271, -0.263, -0.258

for Ising, planar, and Heisenberg spins respectively (cf. fig. 3). We

find that the dependence of qo on R and S is also found to be different than

the predictions of mean-field theory as shown in figure 3. Furthermore,

near the Lifshitz point these results are in agreement with the conclusions

of an earlier independent analysis outlined in II (cf. fig. 3).

Having approximately located q , we can then study the divergence of

.Z(qo). Using techniques described in I, we first analyze the series to



18G
map out the critical surface, and in figure I- we show typical critical

lines as a function of S for fixed R=l. These curves vary smoothly through

the Lifshitz point and the shape of the critical line is in qualitative

agreement with the predictions of mean-field theory. Near the Lifshitz

point, our data is Consistent with the scaling prediction that

TiXr)-.(X' , (X-X.) where x = S/R, xL is the Lifshitz point

value, and 'o is the exponent of the direct susceptibility (Droz and

Coutinho-Filho 1976, see also Hornreich et al 1976).

Our study of the structure factor exponent S reveals the interesting

feature that X appears to vary continuously as the parameters R and S

vary (cf. fig. 5). However, based on universality, we expect exponents

which may be different for the ferromagnetic and helical phases, but which

are independent of R and S. Consequently, a discontinuity in the

exponent should exist at the Lifshitz point. This apparent shortcoming

of series analysis has also been found in previous studies of systems

which go from one universality class to another as interaction parameters

vary (Oitmaa and Enting 1971, 1972, Paul and Stanley 1971, 1972, Rapaport

1971). Based on these experiences, we interpret the rapid variation in

exponent estimates near the Lifshitz point as evidence for a discontinuity.

Our interpretation is also guided by recent results of renormalization

group calculations which predict and compute the magnitude of the dis-

continuity for Ising and planar spins (Droz and Coutinho-Filho 1975,

Garel 1976). For Heisenberg spins, evidence for a first order phase

transition is found, but this feature is not indicated by our series

analysis.

The apparent dependence of I on R and S therefore does not necessarily

contradict universality, but rather it appears to confirm our hypothesis



that the trend to overestimate Y is due to the widening of the structure

factor peak in q space, as discussed in more detail in I. We find that

the largest overestimate for I occurs when the contribution to 8(q) from

wave-wectors q y qo is a maximum, and this occurs when S =-0.35\R\ as

shown in figure 5. On the other hand, for large negative S, competition

between helical ordering and metamagnetic ordering occurs (as S/R---A the

system becomes two decoupled metamagnets), and therefore we expect low

order series will extrapolate to the exponent of the direct suscepti-

bility, and this appears to be the case. From our data we roughly estimate

a structure factor exponent of 1.35 ± .05, 1.40 + .05, and 1.43 + .05

for Isingplanar, and Heisenberg spins respectively. Note, however,

that estimates of I based on series of order six for planar spins,

and order five for Heisenberg spins are too low when S = 0 (cf. fig. 6).

Consequently, we expect that the estimates for the exponent in the

helical phase will also be correspondingly low.

In conclusion, series analysis of the R-S model shows that sub-

stantial corrections to mean-field theory predictions exist near the

Lifshitz point. The wave vector qo associated with the helical phase

is found to be: a) different thatn cos -1 (-|Rj/4S), and b) temperature

dependent. Furthermore, the location of the Lifshitz point, where

qo-' 0, does not occur at S=-iRI/4. Analysis for the structure

factor exponent is quite difficult, but it appears to be consistent

with renormalization group predictions, except for the case of

Heisenberg spins where no evidence for a first-order phase transition

is found.

The authors wish to thank Mr. P.J. Reynolds, Drs. J.F. Nicoll,

T.S. Chang, and W. Klein for many extremely valuable discussions.
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Figure Captions 189

Figure la) The q dependence of the coefficients at(q) normalized

to the same peak height, which appear in the partial

sum S(OB- Z 1a(Jop  for Ising spins for the case

R = 1, S = -0.3. For larger Z the vertical scale is more

compressed so that the peaks fit on the same graph (The

actual values of the coefficients at peak value are:

a 5.433, aS 1575, and 08 t 89475). The arrows make

the approximate locations of each peak, and note that QC(q)

is peaked at 9, coS'•• 2 •\ /S) 0.96 .

ib) The q dependence of the Ising structure factor for fixed

T-T found from the partial sum o Q.• . Shown are typical
c ,LVo

curves for various S and fixed R = 1. Note that for S = -0.4

the contribution to 8(q) for q t qo is quite large.

Figure 2) A schematic picture of the structure factor in T-q space.

For high temperature the peak of .(q) occurs at q = cos-1 (-WR4S)

and as T decreases, this peak moves to lower q for S >-0.65,

and to higher q for S<-0.65. Extrapolating series for.(q)

gives rise to a line of apparent singularities in the T-q

plane, and the peak of this curve locates qo at Tc.

Figure 3a) The ordered phase wave vector squared versus S/R for the case

R = 1 and Ising spins. Shown are: the mean field prediction

= cos -1 ( R /4S) (shown dashed), the prediction based

on the location of the peak of Z(q) versus q which is an

overestimate for S>-0.65 and underestimate for S< -0.65



Figure 3b)

Figure 4)

Figure 5a)

Figure 5b)
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(shown dotted), the prediction based on the location of the

peak of T (q) versus q (shown solid), and the prediction

of an independent method (cf. II) based on minimizing an

approximate formof Z(q) with respect to q (triangles).

The ordered phase wave vector squared versus S/R for the

case R = 1 for Ising, planar, and Heisenberg spins, based

on the location of the peak T (q) versus q. Also shown

for comparison is the mean field prediction.

The critical lines for the case R = 1 and varying S,

found by analyzing the susceptibility series for the

ferromagnetic phase, and the structure factor series

for the helical phase, for Ising, planar, and Heisenberg

spins. The curves are normalized by the value of Tc

at R-i ank S-o . Also shown for comparison is the

mean field prediction. To make a fair comparison, we base

these three curves on analysis of fifth order series.

Successive estimates 4for the exponent ý , for fixed

R =1 and decreasing values of S, for the case of Ising

spins. Note especially the dependence of the estimates

on S. The largest estimates for ý occurs when the

contribution to 4 (q) for q # qo is a maximum (cf. fig. lb),

and this occurs when S = -0.3b.

Linearly extrapolating the curves of figure 5a gives a

better estimate for the exponent a . Shown is Jet for

R = i and varying S for Ising, planar, and Heisenberg

spins. From these estimates a discontinuity in the exponent

value at the Lifshitz point is inferred (shown dashed).
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IV. DISCUSSION
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9 THE CRITICAL REGION NEAR THE LIFSHITZ POINT

In our study of the R-S model, we have had difficulty

in interpreting series estimates for exponents as the

competing interaction S varies (cf fig. 9.1). It is

predicted that there exist two different sets of universal

exponents for the ferromagnetic and helical phases,

and this means that a step function discontinuity in an

exponent value exits at the Lsfshitz point (Droz and

Coutinho-Filho 1975, Garel 1976). However, series

analysis of the R-S model indicates exponent estimates

that vary continuously with S. In particular, we are

concerned with our estimates for the susceptibility

exponent in the ferromagnetic phase. These estimates

increase dramatically as S is decreased from zero. A

similar continuous variation in exponent value is found

to occur in systems for which the relative values of certain

interaction parameters vary. Examples include: aniotropic

systems in which an anisotropy parameter varies (Oitmaa and

Enting 1971, 1972, Rapaport 1971, Paul and Stanley 1971,

1972 a) systems with further-neighbor interactions of

varying strength (Dalton and Wood 1965, Domb and Dalton 1966,

Bowers and Woolf 1969), and dilute ferromagnets of varying

dilution (Rapaport 1971, Rushbrooke 1971). It appears,

based on this past experience, and on results from this
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work, that the series results contradict universality.

Hbwever, a more careful analysis of lengthier series is

possible in certain systems, and it is found that

analysis of progressively lengthier series will eventually

show trends consistent with universality as sketched in

fig. 9.2 (Paul and Stanley 1972a,b). This analysis was

important in providing a theoretical confirmation of the

universality hypothesis.

Unfortunately, series for the R-S model are not long

enough to show trends that indicate universal exponents

(cf fig. 9.2), and this is a potentially distressing result.

To address this situation, we wish to show two things.

First, we give a rough mean field estimate that indicates

that the critical region shrinks as S decreases, and

moreover, the number of series coefficients required to

probe the critical region becomes correspondingly larger.

Second, we analyze relatively lengthy series for the R-S

Hamiltonian in the spherical model limit, and we find

trends in series estimates that are consistent with

universality appearing only at high order. From these

two pieces of evidence, we infer the validity of universality

for the R-S Hamiltonian.

To roughly estimate influence of the parameter S on

the size of the critical region, we proceed as follows.
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Starting with the expression for the structure factor

8(q), with q along the z-axis (see section 2),

IRlI+4 1Z ] 1

' + 2 I(9.1)

we find the correlation length in the z-direction to be

(9.2)

Consider first the case R=l and S=0, the isotropic

system with nearest-neighbor interactions. For this case

we have g b(t) . As the temperature decreases the

correlation length grows, and when is greater than some

value E3o the asymptotic critical behavior becomes

evident. The temperature at which this occurs provides

an estimate for the size of the critical region. For

the sake of argument, suppose that 0=1. This gives

t =(6C 2)-1 = 1/6. With this estimate for the size of

the critical region we next consider the number of series

coefficients that are required to probe into this region

for the Ising model. When R=l and S=0, kTc/Jxy 4.5

and therefore t -1- kT-•--Y s 1/6, and this gives
o kT./ J

'6
kT/J - x 4.5 = 5.4. At this temperature we wish to

0 xy 5

see how useful a 10th order series will be in determining

critical behavior. The susceptibility series is,
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X+30
(9.3)

-i
When Jy /kT =(5.4) , the coefficients become,

X=1+1.11+1.03+0.94+0.83+0.73 0.63+0.55+

0.47+0.41+0.35+... (9.4)

to tot a Aer

The partial sum consisting of the first ten terms is

8.05 while the infinite sum, based on

X= 1.02t54 + 0.006t 1/4+... Domb (1974) is 9.4, and

thus most of the contribution to the susceptibility is

contained in the partial sum. More importantly, this

partial sum behaves approximately as t- 5/4 for a range

of temperatures down to To, and therefore it is natural

to expect that extrapolations based on series of order

ten will give reasonable results (cf figure 9.3).

Consider now the case R=l and S=-0.2. In this case

the z-correlation length is ,z=(28t) 11 2, while the

correlation length in the x-y plane is unchanged compared

to the case S=0. In order that three-dimensional
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critical behavior is evident we must have >•z> , and

this gives t =(282)- 1=1/28. Thus a small reduction in S
o o

reduces the size of the critical region by a relatively

large factor. It is now interesting to see how many

series coefficients are required to probe to t<t . From

our analysis we have found kT /J xy4.0 for S=-0.2, and

this gives kT /J =4.15. At this temperature we evaluate
o xy

the susceptibility coefficients to order eight.

=1+5.6 xy + 2 5 2 8 xy +112.7 (9.5)

=1+1.350+1.469+1.579+1.614+1.660+1.658+1.670

+1.650+.... (9.6)

The pattern in the coefficients suggest that many more

terms are required before a truncation becomes accurate.

We see that the first eight terms sum to 13.65, while our

analysis indicates an asymptotic form of gC 1.20 +f 40 • )

which sums to 71.7 at t=1/28. At this temperature most

of the contribution to the susceptibility is not

contained in the first eight terms,and moreover the t

dependence of the eighth order partial sum is much different

-5/4
than t . Therefore not much reliability can be placed

on extrapolations of the eight term series.
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These rough estimates show that a small negative S

value substantially reduces the size of the critical region

compared to the case S=0. Of course, the actual numbers

that appear in our analysis are dependent on the choice of

o =1. However this does not change our conclusion that

as the critical region shrinks, correspondingly more

series coefficients are required to probe the critical

region and to provide accurate extrapolations. Our arguments

should at least make plausible, the exponent estimates from

our series analysis for the R-S model.

In order to confirm our hypothesis, we analyze in

the next section, the R-S Hamiltonian in the spherical

model limit. For this system the exact solution can be

obtained, and moreover it can be shown rigorously that

universality holds in the ferromagnetic phase. Series

analysis of spherical model series shows trends consistent

with universality only at high order, and it is this result

that suggest that universality holds also for the Ising,

planar, and Heisenberg spin systems.
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Figure Captions

Figure 9.1

(a)

(b)

Figure 9.2

Figure 9.3
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Schematic dependence of an exponent on some

some parameter of the system, S for example.

A discontinuity in an exponent value at P

shows up as a continuous variation, when using

estimates based on finite length series.

For some value p, less than but almost equal

to po, an exponent estimate Y(2)might be

obtained from analyzing the first few series

terms by ratio methods. However, as more

terms are analyzed, and trend to W(1) must

eventually occur. This behavior is shown

schematically in a ratio plot of the expo-

nent estimates.

Comparison of the n = 1 and n = co successive

ratio exponent estimates ) , for R = 1

and S = -0.15. The Ising series do not

appear to extrapolate to 1.25 (arrow).

This feature also occurs in the analysis of the

spherical model series. But for I >20,

the estimates appear to be approaching 2.0.

This comparison indicates that perhaps 20 or

more Ising coefficients would be required to

see a downward trend to 1.25.

Comparison of the susceptibility, and a partial

sum of a finite number of series coefficients
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near the critical point. The dependence of

log X vers-us log (T-T c) becomes linear as

T-Tc, and the critical region may be defined

as the point where the linearity begins, The

partial sum is a good approximation at high

temperatures, but this approximation breaks

down at some temperature above T . If the

partial sum is accurate into the critical

region (the case shown), then reliable series

extrapolations may be obtained,



FIC 9.1A

- +tie exponewt behl v;s

esi er••.,t bose~ o,%

-. -. - - -r

I I_

ip* f pot~vr~mt4.e p

1tco

- o o - - d

%t S1

(a)

14
?l(. Oi1

208

a1



209

.I F I .l &I a

F\G

2,.0

.321

1/3 v5



210

IYN (`-T ~

I(V
,'ov.

4)

I.kl,

.******** CF , hw 4C \ reco I
lo( -T

1.3½·



211.
10. EXACT RESULTS: THE R-S HAMILTONIAN IN THE SPHERICAL MODEL LIMIT

The ideas of the previous section are best illustrated by analyzing

the spherical model limit of the R-S Hamiltonian for two reasons: First,

the qualitative features of the n = aosystem are the same as the n = 1,2,

and 3 systems. That is, in the ferromagnetic phase, the susceptibility

exponent is 2 for all S (Joyce 1966), while at the Lifshitz point, which

occus when -IRI= 4S,the exponent jumps discontinuously to 4 (Hornreich

et al 1975a, 1976). Second, we can compute the partition function exactly

for this model, and consequently generate series of arbitrary length.

From the analysis of these series, we shall see that as the Lifshitz

point is approached, the number of series terms required to probe asymp-

totic behavior increases drastically.

SERIES GENERATION

We consider the R-S Hamiltonian in the spherical model limit for

arbitrary dimensionality d,

S2 &'j ) S(10.1)

where the first sum is over nearest-neighbor spin pairs in the same (d-1)

dimensional layer, while the last two sums are over nearest-neighbor and

next-nearest neighbor spin pairs along one axis (the z-axis). The spins

si can assume any value si< +*subject to the constraint=si2 = N, where

N is the number of spins in the system. It will be more convenient to

rewrite (10.1) in the following form,

S Zý S- (10.2)
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where J.. is the interaction between spins located at sites i and j.

Most of the thermodynamic properties of this system are determined by the

location of the partition function saddle point, and this is given by

the condition (Berlin and Kac 1952, Joyce 1966),

- J(10.3)

where j is the vector distance between the origin and site j, z is the
sp

saddle point location, and the integral is over the first Brillouin zone.

We define o no • o , and now eq (10.3)

can be written compactly as,

T/ kT - (2R $ 4- A (10.4)

'asp I s

P1 (10.5)

The last equality defines Pn, and for the R-S model in d dimensions we

have explicitly,

Co$~,i Co * %42. -+ + CoSWA,1 4 Q Ws + S 0o02w.&W j

and this integral may be evaluated directly,

The zero field susceptibility can be expressed in terms of the saddle

point as (Berlin and Kac 1952),

(10.7)

Thus, to generate the high-temperature susceptibility series we need to

revert the series in eq (10.5) in order to express 1/Z as a series in
sp



J/kBT. That is, we have 213

6 o (10.8 )

Substitution of this series in eq (10.7) then leads to the desired result.

SERIES ANALYSIS

We now turn to the analysis of the three-dimensional susceptibility

series for the case R = 1 and values of S within the range 0 and -1/4.

The singularity structure of the raw series is similar to the singularity

structure of the n = 1, 2 and 3 raw series, but in addition there exists

another singularity on the positive real p-axis, more distant from the

origin than the physical singularity (cf fig. 10.1 ). Convergence of

Pade approximants to this additional singularity becomes progressively

"noisier" as S decreases, and hence the location of the singularity

becomes more uncertain. Successive ratio extrapolations are influenced

by this singularity (cf fig. 10.3,4), and therefore we shall study both

the raw series, and a corrected series which consists of the raw series

-V
multiplied by (l °J/ - 4) , where .oA and v are respectively the

location and exponent of the additional singularity.

Analysis of both initial series shows a trend to increasing exponent

estimated as S decreases (cf fig. 10.3,4). However, guided by our results

found from analyzing the anisotropic Ising model (section 5 ), we

bilinearly transform both initial series, correct for the spurious

singularity, and look for a downturn in ration extrapolations.

Consider first the bilinear transform of the raw series. For the
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case S = 0, the successive ratio exponent estimates T approach 2

from below as 1t -. o . As S decreases, the upward trend in the eI

become more pronounced, and this gives rise to the increasing estimates

for the susceptibility exponent ý found previously (cf fig. 10.74).

Analysis of these series gives only weak evidence that I is universal

for negative S. However, a Pade analysis of these series shows a large

number of relatively strong singularities on the positive real P-axis,

and in the first and fourth quadrants (cf fig. 10.'). We have shown

(see section 4) that the trends found when extrapolating these series

are due to the influence of these non-physical singularities.

Now consider the bilinear transform of the "correctedX" series.

A Pad" analysis shows that the strength of the additional singularities

on the positive A-axis, and in the first and fourth quadrants has been

substantially reduced (cf fig. 10.4 ). Therefore, series extrapolations

converge more rapidly to the physical singularity, giving rise to more

physical trends. The plots of R versustl/now confirm universality

(cf fig. 10.7b). When S = 0 the iapproach 2 from above, and for small

negative S the k first rise as . increases, and then as J increases

further a downward trend occurs, analagous to the trends found in the

study of the anisotropic Ising model (cf section 5).

While this result confirms our expectations, it also demonstrates the

difficulty associated with analyzing R-S model series. Extreme care must

be taken to sufficiently isolate the physical singularity. Even when this

is accomplished, resultant trends in extrapolations are quite weak, and

caution must be taken in interpretation of analysis results. The extreme

weakness of the trends stems from the reduction in size of the critical



region. As we have argued in the previous section, asymptotic series

behavior is not evident until many coefficients are generated. It appears

that series of order 15 just begin to see the trend toward asymptotic

behavior.

To further understand the relation between the size of the critical

region and trends in series extrapolations, we also analyze the spherical

model susceptibility series in four and five spatial dimensions. The

qualitative features of the four dimensional system are the same as the

three dimensional system, while in five dimensions there is the new

feature that the exponents are continuous at the Lifshitz point. This

occurs because the marginal dimensionality is 4.5 (Hornreich et al 1975)

and the system is therefore described by mean field theory.

For spatial dimension d, there exist competing interactions along one

axis, while there exists ferromagnetic interactions in (d-l) - dimensional

layers. Thus, as d increases, we expect that the influence of the

competing interactions on series analysis will weaken, and this is found

to be the case. In four dimensions the qualitative features of the analysis

are similar to those in three dimensions, except that the presence of

logarithmic corrections complicates the analysis somewhat. These correc-

tions represent a branch cut singularity along the real 1 -axis (cf fig.iO.1).

The effect of these singularities is to slow convergence of ratio estimates,

and in fact it is found that for the case S = 0, Yso•gzi. (Milosevic and

Stanley 1971). In fact, for the case S = -0.15, for example, the

expected downward trend in the K (cf fig. 10.9 ) does not occur until

order 25 in four dimensions compared to order 15 in three dimensions.

However, we stress 4+e important result, that the apparent S dependence of



the exponent estimates are more t2 a en times weaker in four dimensions

than in three.

In five dimensions the S dependence of the exponent estimates is

even weaker still (cf fig. 10.10). Moreover, our analysis verifies that

that the marginal dimensionality at the Lifshitz point is greater than

four, but less than five. When S = -0.25, exponent estimates of the

four dimensional series indicate a value greater than one. (In fact,

the correct value is 4/3, Hornreich et al 1975a). However, in five

dimensions, an exponent value of 1 is clearly indicated (cf fig. 10. ).

In conclusion, the spherical model has proven to be an extremely

useful tool in understanding some subtle features of series analysis.

In particular, our analysis shows that as the size of the critical region

is reduced due to the effects of competing interactions, asymptotic

series behavior is delayed. Moreover, by analyzing series in spatial

dimension d, we have seen that the effects of the competing interactions

are reduced as d increases. For some 44 d< 5, these effects are suffi-

ciently reduced so that mean-field exponents now occur at the Lifshitz

point.
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Figure Captions

Figure 10.1

(a) - (c)

Figure 10.2

(a) - (c)
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The singularity structure of the raw series for R = 1

and various S. Note the presence of both the physical

and antiferromagnetic singularities (denoted by f and

af respectively). Further singularities which are

evident in the Pad" table are denoted by x's. Note the

presence of an additional singularity on the positive

real p -axis, close to the circle of convergence.

This singularity persists even after the bilinear trans-

form i performed, and ratio extrapolations are sub-

stantially influenced by this singularity (cf fig. 10.3,

10.4). It is interesting that as S decreases, convergence

of the Pades to the physical singularity becomes pro-

gressively "noisier", and moreover, the residue associated

with the physical singularity moves into the complex

t3 -plane. It is also interesting to note that these S

dependent features are similar to those found in analysis

of the series for dilute ferromagnetism as the occu-

pation probability of magnetic sites decreases. When

S = -0.25, the Pades give no evidence of a singularity

on the positive real J-axis.

The singularity structure of the "corrected" series formed

by multiplying the raw series by (1 - J /If3,) where

f.,j. and v are respectively the location and exponent

of the additional singularity on the positive real



Figure 10.3

Figure 10.4

Figure 10.5

(a), (b)

Figure 10.6

(a), (b)

p-axis. 219
Successive ratio exponent estimates of the raw series

for R = 1 and various S. As S decreases, the antiferro-

magnetic singularity moves closer to the origin, while

the ferromagnetic singularity moves further away.

When S = -0.15, the two singularities are equidistant.

Consequently, for S < -0.15 the oscillations grow as

increases.

Successive ratio exponent estimates of the "corrected"

series (see text), for R = 1 and various S. These are

substantially different than the estimates in figure 10.3.

The singularity structure of the bilinear transform

of the raw series, for R = 1 and various S. Under the

action of the bilinear transform, the interval (0,oo)

is mapped into (0, A), where B, is the location of

the physical singularity in the raw series. Thus,

the additional singularity in the raw series has been

moved quite close to the physical singularity, and

further, its location has been somewhat smeared out

into the complex P-plane.

The singularity structure of the bilinear transform of

the corrected series, for R = 1 and various S. The

exponents associated with the additional singularities

evident in the figure, are considerably reduced compared

to the case shown in figure 10.5.



Figure 10.7

Figure 10.8

Figure 10.9

Figure 10.10

22O(
Successive ratio exponent estimates for (a) the bilinear

transform of the raw series, and (b) the bilinear trans-

form of the corrected series. Note that for S = -0.15

a downward trend in the YI occur for 1 > 1S that is

more pronounced in (b) than in (a).

The singularity structure of a typical raw series in

four dimensions. The large number of singularities

on the real axis is indicative of a branch cut. These

singularities arise because of logarithmic corrections

in four dimensions.

The successive ratio exponent estimates for the bilinear

transform of the series for the four dimensional system.

When S = -0.15 a trend to 1 = 1 occurs for I > 25,

while when S = - 0.25 the I 4 appear to converge to

the predicted value of 4/3 (Hornreich et al 1975a).

The successive ratio exponents of the bilinear transform

of the five-dimensional series. Even for S =-0.25,

the \f appear to converge to 1. Therefore, in five

dimensions, the exponents at the Lifshitz point are

mean-field like.
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ii Conclusion 239
In conclusion, this work is the first detailed numerical study

of a system which exhibits helical order. Prior to this work, only

a few limited theoretical results about this phenomenon existed. In

what follows we briefly outline the techniques we have used to study

helical order. We also review briefly previous knowledge in this

field, summarize our main results, and indicate how they add to

our existing knowledge (cf. fig. 11.1). Finally, we point out some

remaining open questions, and give some suggestions for future work.

The earliest studies, using mean-field theory, classified the

helically-ordered phases that occurred in various systems with nearest-

neighbor ferromagnetic, and further-neighbor antiferromagnetic

interactions. Recently, it was recognized that a new type of

critical behavior exists at the boundary point between ferromagnetic

and helical order. The critical properties at this particular point

have been exhaustively studied using the renormalization group. In

the past two years, a system with nearest-neighbor ferromagnetic coupling,

and next-nearest neighbor antiferromagnetic coupling along one axis has

been intensively studied because this is the simplest system in which

helical order can occur. We have called this model system the R-S

model. The renormalization group has been used to calculate the

exponents of the helical phase, while we have used mean-field theory

to map out the phase diagram in detail.

Summary of the Present Work - Series Generation

High temperature series coefficients are determined by summing
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classes of lattice graphs. The bonds of these graphs represent the

interactions between the spins at the endpoints of each bond. The

competing S interaction is equivalent to a new bond in the z-direction

of length 2, which couples fourth nearest-neighbor spins (cf. fig. 11.2a).

This feature gives rise to a much more complicated lattice graph

topology. Previous series studies have been limited to systems with

at most third neighbor interactions.

These new complexities are most efficiently accounted for in

linked-cluster theory, in which the S interaction is introduced as an

additional lowest order bond factor (cf. fig. 11.2b). This modification,

in practice, involved the generalization of a computer program based on

linked-cluster theory, so that series can be generated for a system with

up to fourth-neighbor interactions. From this, series at any point in

the R-S parameter space can be calculated. Previous results existed

only along the R or S axes (cf. fig. 11.3).

-General Polynomial Series

Becouse of these graph-theoretic difficulties, it was imperative

to present the series in a form so that as many series coefficients as

possible could be checked against known results. The importance of

thorough checks for the accuracy of the series cannot be understated.

There have been many cases in which published series have been later

shown erroneous. To apply the checks, each series coefficient is

first written as a sum of contributions form different classes of

graphs which contain the same number of Jxy , R, and S bonds. That is,

the high-temperature series, for the susceptibility for example, is
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expressed as X=Ajk. (Jxy/kT)RJSk. Thi rcedure involved generating

series for (L+1)(L+2)/2 linearly independent combinations of Jxy, R, and

S, and then solving L(L+1)(L+2)/212 simultaneous linear equations to

determine the A. to order L.
jki

For the Ising series, it is more useful to express the variable

J/kT in powers of the nearest-neighbor linear chain correlation func-

tion, tanh(J/kT). That is, by an appropriate transformation procedure,

the triple power series was re-expressed as X= jkstatnh(J /kT) ,k k

where pstanh(J /kT)/tanh(Jxy/kT) and astanh(J'/kT)/tanh(J y/kT), and

each Bjki becomes an integer. This form is useful because: a) the

high-temperature series for any Jxy R, and S may be obtained by simple

substitution, and many orders of computer time are saved by this method,

b) by tabulating the Ajkk (or Bjk? ) , the series is presented in a form

that others may use directly, and c) a large fraction of the Ajkt or

Bjk; can now be checked against known results. One type of check is

obtained from studying special limiting values of Jy , R, and S. A

further-reaching checking prodcedure is described next.

-Rigorous Results

We have derived new rigorous results which relate the A.jk

(or Bjk9) to powers of exactly known two-dimensional series coefficients.

For example, we showed that 2X/3R3S R=S=0 Jxy2 [X(R=S= 0 ) ] 3, and this

verifies the coefficients All t and B 11 . Only when these checks were

applied, was it possible to proceed confidently to a study of the helical

phase.



-The Helical Phase and the Lifshitz Point 24t

Our analysis of the helical phase is the first verification, by high-

temperature series analysis, of a spin-structure with an ordering wave-

vector that is incommensurate with the lattice. The order parameter is

thus a periodically varying magnetization with an associated wave vector

q . Therefore the structure factor (q) diverges at T for q=q , and
0 c o

remains finite for all q'#qo In order to study this phase transition,

q must be located, and therefore we have generated and analyzed structure

factor series for arbitrary i. It is the q-dependence of 4(q) that

determines the nature of the phase transition.

-4
In the helical phase, we have found that q : a) is temperature

dependent, and b) differs substantially from the mean-field prediction
-1

1qIo=cos (-lRj/4S) near the Lifshitz point. This is the first pre-

diction that go disagrees with the result of mean-field theory.

The Lifshitz point may be found by varying the values of R and S

so that q-O0. This method was found to be somewhat imprecise because
0

the structure factor peak broadens near the Lifshitz point, and con-

sequently, the location of the peak could not be accurately determined.

We therefore developed an alternate criterion for locating the Lifshitz

point, based on locating the minimum of (q)-1, when it is written in

an approximate form for small q. Thus, if, ())-1 is expressed as

2 4 e n -#
A + Bq + Cq + , it is evident that q-40 when B=O, since q

0 0

is playing the role of an order parameter in a Landau-like expansion.

The condition B=O was found to locate the Lifshitz point accurately.

This is the first calculation, other than simple mean-field theory,

for the location of the Lifshitz point (cf. fig. 11.4).
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-Exponents 24'

The most difficult feature of the analysis was the determination

of the exponents. As R and S vary, a naive analysis indicates

continuously varying exponents, but this feature is to be expected

from analysis of finite-length series. What is disturbing, however,

is that exponent estimates appeared to worsen progressively as more

lengthy series were analyzed. Such a phenomenon also occurs, for

example, in the study of series for dilute ferromagnetism, and the

understanding of this feature remains an outstanding unsolved problem

as yet. We have attempted to partically understand this problem by

the following woek:

First, as a preliminary, it must be ascertained whether trends

which appear in series extrapolations are physical. By physical,

we mean that the order-by-order trends in exponent estimates are the

same as the trends that would be measured experimentally as T approaches

T from above. This equivalence is due to the fact that progressively
c

lengthier series effectively probe closer to T . This preliminary

is important because we have shown that trends in extrapolations are

dependent on the presence of additional non-physical singularities

in the complex f - plane. Therefore, in order to study trends

associated with only the physical singularity, it is necessary to either

remove these non-physical singularities, or transform them far from

the origin. This point is widely appreciated in principle, but not so

widely exploited in practice.

To test our ideas, we first developed a series analysis method that

isolates the physical singularity, and we then applied this method

to the S = 0, R f 0 three-dimensional Ising series. A naive analysis



indicates exponents that vary continuously aslt e8anisotropy strength

R varies. Only when our method is useddo the trends in extrapolations:

a) agree with physical intuition, and b) give evidence for universal

exponents, independent of the anisotropy strength. Finally, when the

method was applied to the R-S model series, the disturbing trends

found by the naive analysis persisted. This procedure confirmed that

these trends are physical.

Having established this fact, we then argued that this feature is

reasonable because the critical region shrinks as the competing inter-

actions come into play, and correspondingly more series terms are re-

quired to probe asymptotic behavior. To test this argument, a system

is required in which: a) the qualitative features of the R-S model are

reproduced, and b) very lengthy series can be generated. The spherical

model limit of the R-S Hamiltonian satisfies these criteria, and there-

fore we studied this system in detail.

-Exact Results

We derived an exact solution for the spherical model partition

function in any dimension, when the competing interactions of the R-S

model are included. From this exact result, series of arbitrary

length may be readily generated. Analysis of the spherical model

series revealed trends in the exponent extrap olations at low order

as the Ising, planar, of Heisenberg model series. However, at much

higher order, the analysis eventually shows trends that are consis-

tent with universality (cf. fig. 11.5). The order at which this

occurs is a measure of the reduction in size of the critical region

as R and S compete. It is only from the analysis of the spherical
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250
model series, that universal exponents can be inferred for the R-S model

for Ising, planar, or Heisenberg spins.

Suggestions for Future Work - Theoretical

Further high-temperature series studies of systems which exhibit

different types of Lifshitz points and helical phases would greatly add

to our general understanding. Specific model systems amenable to

analysis include:

1) An Ising system in which the wave vector of the helical phase is

perpendicular to the spin axis. Such a configuration arises from the

following set of interactions:

T T

where J ' is a competing interaction in the x-direction. It would
x

be intersting to compare the properties of the helical phase for the

two cases of a longitudinal and transverse wave. From this, we may

gain insight into the role that parallel and perpendicular aniso-

tropy play in determining the properties of helical order.



251
2) A system with both second and third neighbor interactions in the

z-direction.

There exist particular values of R,S, and

T such that the coefficients of q 2 and qz4 in

,A(q) are zero simultaneously, and this produces 1

a "higher order" Lifshitz point. A simple mean * j

field calculation shows planes of Lifshitz I

boundaries intersecting at lines of "higher order" Lifshitz points.

3) A system in which there exists competing interactions in two

different directions.

For this system there exist certain values of the interactions so

that the coefficients of two components of q2 are zero; a "biaxial"

Lifshitz point.

0- - +.--

"T

S........... ...........

The helical phase of this system exhibits periodicity in two directions.

Mean-field theory again indicates planes of "uniaxial" Lifshitz

points meeting at a line of "biaxial" Lifshitz points.

In view of 2) and 3) it may be very useful to classify the phase
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diagrams of higher order Lifshitz points in a manner analagous to the

study of higher order critical points.

-Experimental

The greatest advance in our understanding might be provided by

new experiments. We suggest two experiments which can test the

applicability of the R-S model, or any model with competing interactions,

to describe real materials which exhibit a transition between ferro-

magnetic and helical phases. The only example presently available is

the U As,.xSx system found by Lander et al (1972).

First, measurements of the structure factor exponent as the

system varies from a ferromagnetic to a helical phase could be

compared with our predictions. Of particular importance, in light of

our analysis, is the behavior of the exponent near the Lifshitz point.

Most importantly, measurements of the small q dependence of 6(q)

at the Lifshitz point can provide information regarding the details

of the interactions that give rise to helical order. If the mechanism

for helical order is competing interactions, as in the R-S model,

then Z(q) must vary as 1 for small q. An experimental test

of this prediction is therfore of utmost importance.
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Appendix A.



THIS PRJGRAF COMPUTFS THE GENERAL PDLYNOMIAL SERIES IN JxY,JZ/JXY,
NhC JZF/JXY tNC ALSO IN TAN• (JXY),TANH(JZ)/TANH(JXY), ANC TANH(JZP)/

THNH(JxY) FC4 ANY THFRPCOYNAIIC FUNCTICT GENERATED IN A FIGF
TEMPERATURE (I/T) SERIES EXPANSICN
,-1 IS THE CRDER CF THE SERIES WHICH AR _ READ IN
NMt~X IS THE CRDER TO V-FICH THE GENERAL PCLYNCPIAL SERIES IS
CALCULATED
I mAX

DIVENSICNI
DIMENSICN

DIMENSICN

DIMENSICN
DIMVENS ICN
0 1 ME NS I CN

IS THE %NUNFR OF SERIES WHICH ARE READ IN...
XSLS(11, 66),XSERZ(11,66) , XS RZ4(11,66)
CFI(66), ZS (66), Z4TH(66)
SLS(66,11),St RZ(66, 1 ),SERZ4(66, 11),D(11,66
CCEFF( 6' 11,11)
AJXY(SC),AJZ(50),AJZP(50) ,IRUN(50)
S(500 ),SS (5000)

00 18 1=1,11
DC 18 J=1,66
XSUS(I ,J)=C.0Do
XSFRZ(I,J)=C.000

( I,J)=C.GDC
18 KSERZ4( I,J)=.O0DC

tý=
NMAX=8
IMAX=50
V'N=N 'X+1
DO 1 I=19,1[AX
READ(5,100) I
READ(5,102) A
READ(5,101)(S
READ(5,101)(S
READ(r,101) (S
WRITE (6,20C)
WRITE (6,2C6)
00 2 K=1,V
KI=K-1

RUN( I
JXY( I
US( I,
ERZ(I
FRZ4(
IRUK(

),AJZ(I)AJZP( I)

IC),IC=1,M)
lrIC),IC=10",)
I),AJXYCT)I,AJZ.CI

WRITE(6,2C1) KtSLS( ,K)tSERL(I,K)
CCNT INU F

IMAX MUST BE

),AJZP(I)

,SERZ4(I,1K)

MAINtC02
MAIN0003
MAIN0004
MAIN0005
MAIN0006
MAIN0007
MAINOO08
MAIN0009
MAIN0010
MAIN0011
MAIN0012
MAINOO13
MAINO014
MAIN0015
MAINO 16
MAOI0017
MAIN0018
MAIN0019
MAIN0020
MAIN0021
MAIN0022
MAIN0023
MAIN0024
MAIN0025
MAIN0026
MAIN0027
MAIN0028
MAIN0029
MAIN0030
MAIN0031
MAIN0032
MAIN0033
MAIN0034
MAIN0035
MAINO036



THIS SFCTIC, REAPRANCES THF CýTA INTC THE FORM REQUIRED BY SIMO
THE J'S ARE ARRANGEC INTO A MATRIX, EACH RC BEFING ALL THE POSSIBLE
CC"VINATICNS CF PCWERS OF J'S UP TO A CERTAIN CRDER FCR A GIVEN RUN NUMBER
THE SFRIES CCFFFICIENTr CF CIFFERENT RUNS BUT SAME CRDER ARE ARRANGFD
AS VECTOtRS
00 3 I=1,VN
IMAX=I*(I+1)/2
IJMAX= IMAX*2
DG 4 J=l, MAX
CHI (J)=SUS(J, I)
ZSQ(J)=SERZ(J, I)
Z4TH(J)=SFRZ4( J, I
DC 5 11=1, I
DO 5 12=1, I
IF(11+12.GT.I+1) GO TO 5
COFFF(J,II,12)=AJXY(J)**(I-Il-12+1)*AJZ(J)**(11-1)
1*AJZP(J)**(12-1)

CONTINUE
CONTINUE
IJ=0
D00 6 L=1,I
D00 6 M=1,I
DO 6 K=l,INAX
IF(L+M.GT.I+1) GC TO 6
IJ=IJ+1
S(IJ)=CCEFF(K,L,V)
SS( IJ)=S( IJ)

6 CONTINUE
THIS SECTICN SOLVES THE SIVLLTANEOUS
POLYNOMIAL SERIES
CALL SIMQ(S,CHI,IMAX,KS)
IF(KS.NE.1) GC TC 7
WRITE(6,2r7) I
GO TO 12

7 CONTINUE
DO 13 IJ=1,IJMvAX

EQUATIONS NEEDED TC GENERATE THE

MAIN0037
MAIN0038
MAIN0039
MAINCO40
MAIN0041
MAIN0042
MAIN0043
MAIN0044
MAIN0045
MAIN0046
MA I N0047
MAIN0048
MAIN0049
MAIN0050
MAINO051
MAIN0052
MAIN0053
MAIN0054
MAINO055
MAIN0056
MAIN0057
MAINO058
MAIN0059
MAINO060
MAIN0061
MAI N0062
MAIN0063
MAIN0064
MAIN0065
MAIN0066
MAIN0067
MAINO0068
MAIN0069
MAIN070
MAIN007l
MAIN0072



13 S IJ)=SS(IJ)
CALL SIMQ(S,ZSQ,IMAX,KS)
DO 14 IJ=l, IJ"AX

14 S(IJ)=SS(IJ)
CALL SIMQ(S,Z4TH, IMAX,KS)

12 CCNTINUE
C NOC THF SERIS ARE RrARRANGED INTC A FCRM SUITABLE FOR CUTPUT

DO 8 K=1,IMAX
XSUS( I ,K)=CFI(K)
XSERZ(I,K)=ZSC(K)
XSERZ4(I,K)=Z4TH(K)

8 CONT I NUE
3 CONTINUE

C TRANS CALCULATES THE GENERAL PCLYNCMIAL SERIES IN POWERS
C TANH(J'S), GIVEN THE GENERAL PCLYNCMIAL SERIES IN POWERS
C OUTPUT THEN WRITES OUT THE SERIES eOTH ON PAPER AND CARD

CALL TRANSF(XSUS,D,NMAX)
IFN=1
CALL CUTPUT(XSUS
CALL TRANSF(XSE
IFN=2
CALL CUTPUT(XSF
CALL TRANSF(XSE
IFN=3
CALL GUTPUT(XSE
FORMAT (13)
FORMAT(3024.16)
FORMAT( D12.5)
FCRMAT(//IX, 'SE

1'
201 FORMAT(
206 FORVAT(

1108,'<
207 FORMAT(

STCP
END

,D,MN, IFN)

J'S
S

RZ, D,NMAX)

RZ,D,MN, IFN)
RZ4,C,NMAX)

RZ4,D,MN, IFN)

RIES
JZ=',D12.5,9'
6X, 12,T27,026
/IX,'SERIES T
Z~*4>')
/IX,' THE

FCR RUN NUMPER ',13,' J
JZP=',C12.5)

.16,T64,026.16,T95,026.16)
C CRDER',T35,'SUSCEPTIBILI

SOLUTION IS SINGULAR AT

XY=',012.5,

TY' ,T75,'<Z**2>',

GRDER',I6)

MAIN0073
MAIN0074
MAINO075
MAIN0076
MAIN0077
MAINC078
MAIN0079
MAIN0080
MAIN0081
MAIN0082
MAIN0083
MAINOOR4
MAIN0085
MAIN0086
MAIN0087
MAIN0088
MAIN0089
MAINOO0090
MAIN0091
MAIN0092
MAIN0093
MAIN0094
MAIN0095
MAIN0096
MAIN0097
MAIN0098
MAIN0099
MAINO100
MAIN011
MAIN0102MAINO1O2
MAIN0103
MAIN0104
MAIN0105

ND MAIN0106
C.rl MAINOI07

MAINOIO8

1.00
101
102
200



SUJBR[RU T I NE
IM-PLICIT P
DI ECNSI CN
TOL=C.0
KS=O
JJ =- 1
DO 65 J=1,N
JY=J+l
JJ=JJ+N+1
,IGA=O
TT=JJ-J
00 30 I=J,N
IJ=IT+I
IFICABS(BIGA)-

20 BIGA=A(IJ)
I MAX=I

30 CONTINUE
IF(CDA S(BIGA)

35 KS=I
RETURN

40 I1=J+N*(J-2)
IT=IMAX-J
DO 5P K=J,t
11=11+N
12=II+IT
SAVE=A( II)
A(11)=A(12)
A(I2)=SAVE

50 A(II)=A(II)/r
SAVE=R(IMAX)
C(IVAX)=B(J)
B(J)=SAVE/PIS
IF(J-N) 55,70

55 IQS=N*(J-1)
DC 65 IX=JY,N
IXJ=ICS+Ix

SIMO(1,B,N,KS)
EPL28()-H ,C-Z)
S(250) ,9 ?(50 )

-rABS(A(IJ))) 20,3C,30

-TOL) 35 ,35,4C

S IMQO001
SIMC0C02
SIMQOOO3SIM00003
SIMC0004
SIMCO005
SIMQ0006
SIMQ0007
SIMQ0008

SIMQOOOI20

SIM0013
SIMQOO14
SIMCOOC5

SIMOO017

SIM&O018
SIMC0019
SIMQ0020
SIMQ0021
SIMC0022
SIMQ0023
S IMQ0024
SIMC0025
SIMQ0026
SIMQ0027
SIMC0028
SI MC0029
SIMQO030SIMC0031

SIMC0032
SIMQ0033SIM00033
SIMC0034
SI C0035
SIM00036

IGA

A
,55
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0500v is 0sooowiS
SOO w IS
I600W IS

O o00W IS
1'7003WIS

09~00W IS
60OOWIS
O C000W IS
LuOOBWIS
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'xX)
THEý x )

SUBRCUTINF TRANSF(SFRIES,C,NN
THIS RCUTINE TRANSFCRVS
THERYCCYNA'IC FUNCTIC, F

IMPLICIT REýL*R(A-H,C-Z)
CIMENSIGN SERIES(11,66),A(11,
DIMENSICN TRýNS(11),SERI(l1),
MN=NMAX+l
DC 10 I=1,11
DO 10 J=1,66

10 C(I,J)=C.CDC
DO 1 I=1,11

1 TRANS(I)=0.000
DO 6 1=1,11
DO 6 J=1,ll
DO 6 K=1,11
A(I,J,K)=P.CCDP

6 B(I,J,K)=C.CDO
DC 8 I=1,MN
IK=O
DO 8 J=l,I
DO 8 K=1,I
IF(J+K.GT.I+1) GC TO 8
IK=IK+1

A(I,J,K) IS THE COEFFICIENT
*JZP** (K-1)

A(I-J-K+2,JK)=SERIES(I,IK )
8 CONTINUE
TRANS(1)=I.CDO
TRANS(3)=I.CDO/3.P0D
TRANS( 5) =1. CDO/5.000DO
TRANS(7)=I.C00/7.000
TRANS(9)=1 .CD0/9.f°•DO
TRANS(11) =1 C.nC/ 1 .CO
DO 7 I=L,MN
DC 7 J=1,MN
DO 7 K=1,,'N

VARITBLES
PChFRS OF

IN A TRIPLE PFCWER SERIES
J/KT TC TANH(J/KT)

ISER),P(,ISER ,11),C(11,F16)
SERJ(11),SERK(11),PTHSER(I1)

CF JXY**(I-1)*JZ**(J-1)

TRNS0001
FCR A TRNSO002

TRNSC003
TRNS0004
TRNS0005
TRNSO006
TRNS0007
TRNS0008
TRNS0009
TRNSO010
TRNSO011
TRNS0012
TRNS0013
TRNS0014
TRNSO015
TRNS0016
TRNS0017
TRNS0018
TRNS0019
TRNS0020
TRNS0021
TRNS0022
TRNS0023
TRNS0024
TRNS0025
TRNS0026
TRNS0027
TRNS0028
TRNS0029
TRNS0030
TRNS0031
TRNS0032
TRNS0033

S TRNS0034
TRNS0035
TRNS0036



ZLOOSNbI
ILOOSNWI
OLOOSNtI~
6900SNbi
8900SNll
L900SNW8
9900SN1I
S900SNil
4'900SNbJ1
C900SNbI
Z9O0SN~i.l
1900SNbl

0900SNbiJ
600SNbi
8SOOSNbl 8c~00SNti1
L400SNi~1
LSOOSNbl
900SN'11

9SOOSNbI
C 40 0S Nd WI
ESOOSNbi

0O500SN•II
64'OOSN•A1

84'OOSNB1J ZSOOSN8i
V00SN•lL

O4'00SN•i IOOSNbl OS;OOSNbi 61•OOSNbl

L 47 OOS N bi 4700SNbI
0i t 0 0 S N d I E*~70OS~dl Z4700SNbil

6£OOSNK-I
8 E~ GO 0S N '3 I
L 00';NI

(I-r)** (Zr )tHNVI*(I-I )**( AXr)HNV I JO IN31

I+XvJm=X
I+Xvr=x
I+XV4;I=X

(XvnN

(XVAN

(XVAN

6 01 0 (1l+1'100A+r)JI
I'~=) 6 90(
l 1=(

"  
0, UU

NI•=r 6 90 O=)4Il

rf'IN 1 6 1N3 L

3flNIlNOO Z ýi nN I I Nl 3 3
(N)>i]S*(W)rb3SI

l-l+I )8={ l+~~-W+ r'l-w+r l-)l)
(I-~)i)##(er)HNVI#

31J J303 3H1 SI (A'r'I)d
Z6XVNII=N Z 0(0
z'xvwr'i=w z 00
Z'XV•C'= =l Z 00

vwm (Z=xVWF')3"Z/(IO+XVW}) i
v~p (Z/Xvwroo:-Joz/(I+Xvwr))J VAI (Z/XVW DJOZ"/(l+XV4l))Jl

I-XviN (I'lleXVr4)-ll

I=xvwr (I'Ii'xvwr)3i I=XVWI ( I11-XVAI)JI

)A-NN=XVWN
r-NW=xvwr
I-NW=XVWI

( l)•lS~ld= ( ])• -lS
Fk;JI=l g 3cr

' i3SHid ' 'f'SNVbI) HId= IS 3ISS

'bSHld'AG'SONVbi)Hldý,4S 1lVO (l~t2:-,'3H d=(i1rb d S

4b3Sld~ol3N~il.ld',Sl £ 0

' i3SHId'I 1 0'SNV•il) aidsJ- 77VO
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IK=IK+ 1
C(I,IK)=3(I-J-K+2,JK)

9 1CONTIItJ'p
RFNT U P, NRETUIRN
ZiND

T JNS0073
TRNS0074
TRNS0075
TRNSO076
TRNS0077



SUPROUT[INE SERPT-F(SER,P,PTHSER,NvAX )
SERPTH RAISES ý SERIES TC THE PT- PGWER TC ORCFR NMAX
THE FIRST CCEFFICIENT CF THE SERIES MUST BE NGN7ERC

IMPLICIT REPL*8(A-HC-Z)
DI ENSICN SFR(11),A(11),v (11),PThSER( 11)
DO 2 I=I1,1
9( 1)=0.0ODO

2 A(I)=C.("DC
rMN=NM% X+ 1
A( I )=0.000
(1) =SFR 1) **P

00 1 I=2,MN
A(I)=SER( I)
QC=DFLOAT (I)

1 (1)=P(I-1)*(P-.+2.000)/(DFLOAT(T-1)*SER(1)
CALL TFCRtV(B,A,PTHSER,NMAX)
RETURN
FND

SRPT0001
SRPT0002
SRPT0003
SRPT0004
SRPT0005
SRPT0006
SRPT0007
SRPT0008
SRPTOO09
SRPT0010
SRPT0011
SRPT0012
SRPT0013
SRPT0014
SRPT0015
SRPT0016
SRPT0017
SRPT0018



SUPRf.rUT I'NE
PURPOSF

IF

TFjRM ( SERA, SFR F , SE RC ,NMAX)

F(X)=SERA(1)+SERA(2)*X+.. .
G(X)=SERP(1)+SERP(2)*X4. . .
THEN TFORM CALCULATES
F(G(X))=SERC(1)+SERC(2)*X+.

IMPLICIT REAL48(A-H,C-Z)
DI uENSICN IV(ll),"V(11),NV(11),TT(

1,AFACT(11)
DO 9 I=1,11
SERC(I)=i.OCO0

9 TT(I)=C.ODO
NN=NMAX+l
00D 1 I=1,NN

1 SERC(1)=0.O
AFACT(1)=1.C
DO 2 I=1,NMAX

2 AFACT(I+1)=CFLOAT(I )*AFACT(I)
IV(NN)=C
V (N N)= =0

NV(NN)=0
TT(NN)=1.0
KVAX=N•N

+SERA(NMAX+1 )*X**NMAX
+SERB(NMAX+1)*X*'*NMAXX

* +SERC(NMAX+1)*X**NVAX

11),SERA( 11),SERB(11) ,SERC(11)

TFRM0001
TFRM0002
TFRM0003
TFRO0004
TFR.OO005
TFRM0006
TFRM0007
TFRPV0008
TFRMC009
TFRMOO10
TFRM0011
TFRM012
TFRMO013
TFRMO0014
TFRM0015
TFRM0016
TFRO0017
TFRM0018
TFRM0019
TFRM0020
TFRM0021
TFRM0022
TFRM0023
TFR0024
TFRM0025
TFRM0026
TFRv0027
TFRM0028
TFRM0029
TFRM0030
TFRM0031
TFRM0032
TFRM0033
TFRV0034
TFRM0035
TFRM0036

3 DO 4 K=2,KMAX
J=KMAX-K+2
IV(J-1)=0
IF(IV(J).EQ.0) GC TC 5
TT(J-1)=TT(J)*SERB(J)**IV(J)/AFACT(IV(J)+1)
GO TO 6

5 TT(J-I)=TT(J)
6 NV(J-I)=NV(J)-IV(J)*(J-1)
4 MV(J-I)=MV(J)-IV(J)

PRCD=TT(1)
NSUM=1-'V( )
MSUM=I-MV(1)



IF(NSUl'.5T.NN) GO TO 7
IF (NSUM.LE.0) WRITF(6,L04)
IF(MSUM.Lr .O) WR ITE ( 6 , 1 05)
SERC(\SUM)=SERC(NSUM)+SERA(VSUMiA*FACT(PSUM)*PRCD

7 DC 8 I=2?,NN
Ic((IV(I)+I)*(1-1)-NV(I).ST.NPAX) GC TC 8
IV(I)=IV( I)+1
KMAX=I
SC TO 3

8 CONTINUE
104 FCRVAT(1X,' NSUM IS LESS THAN ZERO')
105 FORMAT(IX,' MSUM IS LESS TFAN ZERO')

RETURN
c ND

TFRM0037
TFRMO038
TFRM0039
TFRv0040
TFRM0041
TFRM0042
TFRV0043
TFRMOO44
TFRM0045
TFRM0046
TFRM0047
TFRM0048
TFRM0049
TFRP0050



SUBRCUT IJF CJTPUT(YSERZSER,Y'L, IrN)
IT MPLICIT RE L*8( A-H,C-Z)
CIVENSION YSERR(1,66),ZSER(11,66),FUNC(11,66,2)
DIMENSION IP(66), I((66)
DIE\NSICN FNCTN(3)
DATA FNCTN/'CHI','<Z*(12>','<Z'4 4>'/

THE FORMAT CF THE PUNCFED CUTPUT IS .
SERIFS IS PRINTED , TI-EN THE SERIES COEFFI
J'S ANC THEN IN DCWERS OF TANH(J'S). . . T
THE PRINTED CUTPUT BUT THE PGWER CF EACH C
THEN A BLANK CARD IS PLNCHED

vRITF(6,100) FNCTN(IFN
WRITE(7,1C3) FNCTN(IFN
DO 1 1=1,11
DO 1 J=1,66
FUNC(I,JI)=YSER(IJ)

1 FUNC( I,J2)=ZSER(II,J)
DC 2 IX=1,2
DO 2 I=1,MNy
IMIN=I-1
IVAX=I*( I+1 )/2
IK=0
DO 3 L=1,I
DC 3 m=1,I
IF(L+ M .'ST.I+1) GO TO 3
IK=IK+1
IP(IK)=L-1
IQ(IK)=M-l

3 CONT INUUPF

WR ITF( 7,102 )(FUNC (I I,J,
2 wRIT_(6,101) I[MIN,(FUN

WR I TE( 7,104)
100 Ft3RMAT(//IX,' THE GENE

1A7,'IN THE FIRST LIST,
2'R =TANH(JZ) /TANH(JXY) ,

101 FCRMAT(/1X,'S[RIES TC

FIRST THE NAME CF THE
CIENTS FIRST IN PChERS CF
HE FORMAT IS THE SAME AS
CEFFICIENT IS NOT PUNCHED

)

IX) ,J=1,IVAX)
C(I,J,IX),IP(

RAL PCL
'/' AND

S=TANF(
CRDER '

J), IC(J),J=1,IMAX)

YNCVIAL SERIES IN
IN TANF(JXY),',

JZP)/TANP(JXY) IN
,12,3(C24.16,' (R

JXY,R,S FOR

THE SECOND LIST')
**',II,')', 4

0

OUT
OUT
GUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OU T
OUT
OUT
OUT
OUT
OUT
OUT

0001
0002
C003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036



(R**1',T 1,') I S'(S**', II, )' ) /))1'(S~i', Ii,' )')/15(19X 3(024.16,p'
102 FCRMAT(3D24,16)
103 FCRMAT(I7)
104 FCRMAT(1H )

RETURN
END

OUT 0037
OUT 0038
OUT 0039
OUT 0040
OUT 0041
OUT 0042
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